| // Copyright 2020 The Monogon Project Authors. |
| // |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Taken and pruned from go-attestation revision 2453c8f39a4ff46009f6a9db6fb7c6cca789d9a1 under Apache 2.0 |
| |
| package eventlog |
| |
| import ( |
| "bytes" |
| "crypto" |
| "crypto/sha1" |
| "crypto/sha256" |
| "encoding/binary" |
| "errors" |
| "fmt" |
| "io" |
| "sort" |
| |
| // Ensure hashes are available. |
| _ "crypto/sha256" |
| |
| "github.com/google/go-tpm/tpm2" |
| ) |
| |
| // HashAlg identifies a hashing Algorithm. |
| type HashAlg uint8 |
| |
| // Valid hash algorithms. |
| var ( |
| HashSHA1 = HashAlg(tpm2.AlgSHA1) |
| HashSHA256 = HashAlg(tpm2.AlgSHA256) |
| ) |
| |
| func (a HashAlg) cryptoHash() crypto.Hash { |
| switch a { |
| case HashSHA1: |
| return crypto.SHA1 |
| case HashSHA256: |
| return crypto.SHA256 |
| } |
| return 0 |
| } |
| |
| func (a HashAlg) goTPMAlg() tpm2.Algorithm { |
| switch a { |
| case HashSHA1: |
| return tpm2.AlgSHA1 |
| case HashSHA256: |
| return tpm2.AlgSHA256 |
| } |
| return 0 |
| } |
| |
| // String returns a human-friendly representation of the hash algorithm. |
| func (a HashAlg) String() string { |
| switch a { |
| case HashSHA1: |
| return "SHA1" |
| case HashSHA256: |
| return "SHA256" |
| } |
| return fmt.Sprintf("HashAlg<%d>", int(a)) |
| } |
| |
| // ReplayError describes the parsed events that failed to verify against |
| // a particular PCR. |
| type ReplayError struct { |
| Events []Event |
| invalidPCRs []int |
| } |
| |
| func (e ReplayError) affected(pcr int) bool { |
| for _, p := range e.invalidPCRs { |
| if p == pcr { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // Error returns a human-friendly description of replay failures. |
| func (e ReplayError) Error() string { |
| return fmt.Sprintf("event log failed to verify: the following registers failed to replay: %v", e.invalidPCRs) |
| } |
| |
| // TPM algorithms. See the TPM 2.0 specification section 6.3. |
| // |
| // https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf#page=42 |
| const ( |
| algSHA1 uint16 = 0x0004 |
| algSHA256 uint16 = 0x000B |
| ) |
| |
| // EventType indicates what kind of data an event is reporting. |
| type EventType uint32 |
| |
| // Event is a single event from a TCG event log. This reports descrete items such |
| // as BIOs measurements or EFI states. |
| type Event struct { |
| // order of the event in the event log. |
| sequence int |
| |
| // PCR index of the event. |
| Index int |
| // Type of the event. |
| Type EventType |
| |
| // Data of the event. For certain kinds of events, this must match the event |
| // digest to be valid. |
| Data []byte |
| // Digest is the verified digest of the event data. While an event can have |
| // multiple for different hash values, this is the one that was matched to the |
| // PCR value. |
| Digest []byte |
| |
| // TODO(ericchiang): Provide examples or links for which event types must |
| // match their data to their digest. |
| } |
| |
| func (e *Event) digestEquals(b []byte) error { |
| if len(e.Digest) == 0 { |
| return errors.New("no digests present") |
| } |
| |
| switch len(e.Digest) { |
| case crypto.SHA256.Size(): |
| s := sha256.Sum256(b) |
| if bytes.Equal(s[:], e.Digest) { |
| return nil |
| } |
| case crypto.SHA1.Size(): |
| s := sha1.Sum(b) |
| if bytes.Equal(s[:], e.Digest) { |
| return nil |
| } |
| default: |
| return fmt.Errorf("cannot compare hash of length %d", len(e.Digest)) |
| } |
| |
| return fmt.Errorf("digest (len %d) does not match", len(e.Digest)) |
| } |
| |
| // EventLog is a parsed measurement log. This contains unverified data representing |
| // boot events that must be replayed against PCR values to determine authenticity. |
| type EventLog struct { |
| // Algs holds the set of algorithms that the event log uses. |
| Algs []HashAlg |
| |
| rawEvents []rawEvent |
| } |
| |
| func (e *EventLog) clone() *EventLog { |
| out := EventLog{ |
| Algs: make([]HashAlg, len(e.Algs)), |
| rawEvents: make([]rawEvent, len(e.rawEvents)), |
| } |
| copy(out.Algs, e.Algs) |
| copy(out.rawEvents, e.rawEvents) |
| return &out |
| } |
| |
| type elWorkaround struct { |
| id string |
| affectedPCR int |
| apply func(e *EventLog) error |
| } |
| |
| // inject3 appends two new events into the event log. |
| func inject3(e *EventLog, pcr int, data1, data2, data3 string) error { |
| if err := inject(e, pcr, data1); err != nil { |
| return err |
| } |
| if err := inject(e, pcr, data2); err != nil { |
| return err |
| } |
| return inject(e, pcr, data3) |
| } |
| |
| // inject2 appends two new events into the event log. |
| func inject2(e *EventLog, pcr int, data1, data2 string) error { |
| if err := inject(e, pcr, data1); err != nil { |
| return err |
| } |
| return inject(e, pcr, data2) |
| } |
| |
| // inject appends a new event into the event log. |
| func inject(e *EventLog, pcr int, data string) error { |
| evt := rawEvent{ |
| data: []byte(data), |
| index: pcr, |
| sequence: e.rawEvents[len(e.rawEvents)-1].sequence + 1, |
| } |
| for _, alg := range e.Algs { |
| h := alg.cryptoHash().New() |
| h.Write([]byte(data)) |
| evt.digests = append(evt.digests, digest{hash: alg.cryptoHash(), data: h.Sum(nil)}) |
| } |
| e.rawEvents = append(e.rawEvents, evt) |
| return nil |
| } |
| |
| const ( |
| ebsInvocation = "Exit Boot Services Invocation" |
| ebsSuccess = "Exit Boot Services Returned with Success" |
| ebsFailure = "Exit Boot Services Returned with Failure" |
| ) |
| |
| var eventlogWorkarounds = []elWorkaround{ |
| { |
| id: "EBS Invocation + Success", |
| affectedPCR: 5, |
| apply: func(e *EventLog) error { |
| return inject2(e, 5, ebsInvocation, ebsSuccess) |
| }, |
| }, |
| { |
| id: "EBS Invocation + Failure", |
| affectedPCR: 5, |
| apply: func(e *EventLog) error { |
| return inject2(e, 5, ebsInvocation, ebsFailure) |
| }, |
| }, |
| { |
| id: "EBS Invocation + Failure + Success", |
| affectedPCR: 5, |
| apply: func(e *EventLog) error { |
| return inject3(e, 5, ebsInvocation, ebsFailure, ebsSuccess) |
| }, |
| }, |
| } |
| |
| // Verify replays the event log against a TPM's PCR values, returning the |
| // events which could be matched to a provided PCR value. |
| // An error is returned if the replayed digest for events with a given PCR |
| // index do not match any provided value for that PCR index. |
| func (e *EventLog) Verify(pcrs []PCR) ([]Event, error) { |
| events, err := e.verify(pcrs) |
| // If there were any issues replaying the PCRs, try each of the workarounds |
| // in turn. |
| // TODO(jsonp): Allow workarounds to be combined. |
| if rErr, isReplayErr := err.(ReplayError); isReplayErr { |
| for _, wkrd := range eventlogWorkarounds { |
| if !rErr.affected(wkrd.affectedPCR) { |
| continue |
| } |
| el := e.clone() |
| if err := wkrd.apply(el); err != nil { |
| return nil, fmt.Errorf("failed applying workaround %q: %v", wkrd.id, err) |
| } |
| if events, err := el.verify(pcrs); err == nil { |
| return events, nil |
| } |
| } |
| } |
| |
| return events, err |
| } |
| |
| // PCR encapsulates the value of a PCR at a point in time. |
| type PCR struct { |
| Index int |
| Digest []byte |
| DigestAlg crypto.Hash |
| } |
| |
| func (e *EventLog) verify(pcrs []PCR) ([]Event, error) { |
| events, err := replayEvents(e.rawEvents, pcrs) |
| if err != nil { |
| if _, isReplayErr := err.(ReplayError); isReplayErr { |
| return nil, err |
| } |
| return nil, fmt.Errorf("pcrs failed to replay: %v", err) |
| } |
| return events, nil |
| } |
| |
| func extend(pcr PCR, replay []byte, e rawEvent) (pcrDigest []byte, eventDigest []byte, err error) { |
| h := pcr.DigestAlg |
| |
| for _, digest := range e.digests { |
| if digest.hash != pcr.DigestAlg { |
| continue |
| } |
| if len(digest.data) != len(pcr.Digest) { |
| return nil, nil, fmt.Errorf("digest data length (%d) doesn't match PCR digest length (%d)", len(digest.data), len(pcr.Digest)) |
| } |
| hash := h.New() |
| if len(replay) != 0 { |
| hash.Write(replay) |
| } else { |
| b := make([]byte, h.Size()) |
| hash.Write(b) |
| } |
| hash.Write(digest.data) |
| return hash.Sum(nil), digest.data, nil |
| } |
| return nil, nil, fmt.Errorf("no event digest matches pcr algorithm: %v", pcr.DigestAlg) |
| } |
| |
| // replayPCR replays the event log for a specific PCR, using pcr and |
| // event digests with the algorithm in pcr. An error is returned if the |
| // replayed values do not match the final PCR digest, or any event tagged |
| // with that PCR does not posess an event digest with the specified algorithm. |
| func replayPCR(rawEvents []rawEvent, pcr PCR) ([]Event, bool) { |
| var ( |
| replay []byte |
| outEvents []Event |
| ) |
| |
| for _, e := range rawEvents { |
| if e.index != pcr.Index { |
| continue |
| } |
| |
| replayValue, digest, err := extend(pcr, replay, e) |
| if err != nil { |
| return nil, false |
| } |
| replay = replayValue |
| outEvents = append(outEvents, Event{sequence: e.sequence, Data: e.data, Digest: digest, Index: pcr.Index, Type: e.typ}) |
| } |
| |
| if len(outEvents) > 0 && !bytes.Equal(replay, pcr.Digest) { |
| return nil, false |
| } |
| return outEvents, true |
| } |
| |
| type pcrReplayResult struct { |
| events []Event |
| successful bool |
| } |
| |
| func replayEvents(rawEvents []rawEvent, pcrs []PCR) ([]Event, error) { |
| var ( |
| invalidReplays []int |
| verifiedEvents []Event |
| allPCRReplays = map[int][]pcrReplayResult{} |
| ) |
| |
| // Replay the event log for every PCR and digest algorithm combination. |
| for _, pcr := range pcrs { |
| events, ok := replayPCR(rawEvents, pcr) |
| allPCRReplays[pcr.Index] = append(allPCRReplays[pcr.Index], pcrReplayResult{events, ok}) |
| } |
| |
| // Record PCR indices which do not have any successful replay. Record the |
| // events for a successful replay. |
| pcrLoop: |
| for i, replaysForPCR := range allPCRReplays { |
| for _, replay := range replaysForPCR { |
| if replay.successful { |
| // We consider the PCR verified at this stage: The replay of values with |
| // one digest algorithm matched a provided value. |
| // As such, we save the PCR's events, and proceed to the next PCR. |
| verifiedEvents = append(verifiedEvents, replay.events...) |
| continue pcrLoop |
| } |
| } |
| invalidReplays = append(invalidReplays, i) |
| } |
| |
| if len(invalidReplays) > 0 { |
| events := make([]Event, 0, len(rawEvents)) |
| for _, e := range rawEvents { |
| events = append(events, Event{e.sequence, e.index, e.typ, e.data, nil}) |
| } |
| return nil, ReplayError{ |
| Events: events, |
| invalidPCRs: invalidReplays, |
| } |
| } |
| |
| sort.Slice(verifiedEvents, func(i int, j int) bool { |
| return verifiedEvents[i].sequence < verifiedEvents[j].sequence |
| }) |
| return verifiedEvents, nil |
| } |
| |
| // EV_NO_ACTION is a special event type that indicates information to the parser |
| // instead of holding a measurement. For TPM 2.0, this event type is used to signal |
| // switching from SHA1 format to a variable length digest. |
| // |
| // https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientSpecPlat_TPM_2p0_1p04_pub.pdf#page=110 |
| const eventTypeNoAction = 0x03 |
| |
| // ParseEventLog parses an unverified measurement log. |
| func ParseEventLog(measurementLog []byte) (*EventLog, error) { |
| var specID *specIDEvent |
| r := bytes.NewBuffer(measurementLog) |
| parseFn := parseRawEvent |
| var el EventLog |
| e, err := parseFn(r, specID) |
| if err != nil { |
| return nil, fmt.Errorf("parse first event: %v", err) |
| } |
| if e.typ == eventTypeNoAction { |
| specID, err = parseSpecIDEvent(e.data) |
| if err != nil { |
| return nil, fmt.Errorf("failed to parse spec ID event: %v", err) |
| } |
| for _, alg := range specID.algs { |
| switch tpm2.Algorithm(alg.ID) { |
| case tpm2.AlgSHA1: |
| el.Algs = append(el.Algs, HashSHA1) |
| case tpm2.AlgSHA256: |
| el.Algs = append(el.Algs, HashSHA256) |
| } |
| } |
| if len(el.Algs) == 0 { |
| return nil, fmt.Errorf("measurement log didn't use sha1 or sha256 digests") |
| } |
| // Switch to parsing crypto agile events. Don't include this in the |
| // replayed events since it intentionally doesn't extend the PCRs. |
| // |
| // Note that this doesn't actually guarentee that events have SHA256 |
| // digests. |
| parseFn = parseRawEvent2 |
| } else { |
| el.Algs = []HashAlg{HashSHA1} |
| el.rawEvents = append(el.rawEvents, e) |
| } |
| sequence := 1 |
| for r.Len() != 0 { |
| e, err := parseFn(r, specID) |
| if err != nil { |
| return nil, err |
| } |
| e.sequence = sequence |
| sequence++ |
| el.rawEvents = append(el.rawEvents, e) |
| } |
| return &el, nil |
| } |
| |
| type specIDEvent struct { |
| algs []specAlgSize |
| } |
| |
| type specAlgSize struct { |
| ID uint16 |
| Size uint16 |
| } |
| |
| // Expected values for various Spec ID Event fields. |
| // https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=19 |
| var wantSignature = [16]byte{0x53, 0x70, |
| 0x65, 0x63, 0x20, 0x49, |
| 0x44, 0x20, 0x45, 0x76, |
| 0x65, 0x6e, 0x74, 0x30, |
| 0x33, 0x00} // "Spec ID Event03\0" |
| |
| const ( |
| wantMajor = 2 |
| wantMinor = 0 |
| wantErrata = 0 |
| ) |
| |
| // parseSpecIDEvent parses a TCG_EfiSpecIDEventStruct structure from the reader. |
| // |
| // https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=18 |
| func parseSpecIDEvent(b []byte) (*specIDEvent, error) { |
| r := bytes.NewReader(b) |
| var header struct { |
| Signature [16]byte |
| PlatformClass uint32 |
| VersionMinor uint8 |
| VersionMajor uint8 |
| Errata uint8 |
| UintnSize uint8 |
| NumAlgs uint32 |
| } |
| if err := binary.Read(r, binary.LittleEndian, &header); err != nil { |
| return nil, fmt.Errorf("reading event header: %v", err) |
| } |
| if header.Signature != wantSignature { |
| return nil, fmt.Errorf("invalid spec id signature: %x", header.Signature) |
| } |
| if header.VersionMajor != wantMajor { |
| return nil, fmt.Errorf("invalid spec major version, got %02x, wanted %02x", |
| header.VersionMajor, wantMajor) |
| } |
| if header.VersionMinor != wantMinor { |
| return nil, fmt.Errorf("invalid spec minor version, got %02x, wanted %02x", |
| header.VersionMajor, wantMinor) |
| } |
| |
| // TODO(ericchiang): Check errata? Or do we expect that to change in ways |
| // we're okay with? |
| |
| specAlg := specAlgSize{} |
| e := specIDEvent{} |
| for i := 0; i < int(header.NumAlgs); i++ { |
| if err := binary.Read(r, binary.LittleEndian, &specAlg); err != nil { |
| return nil, fmt.Errorf("reading algorithm: %v", err) |
| } |
| e.algs = append(e.algs, specAlg) |
| } |
| |
| var vendorInfoSize uint8 |
| if err := binary.Read(r, binary.LittleEndian, &vendorInfoSize); err != nil { |
| return nil, fmt.Errorf("reading vender info size: %v", err) |
| } |
| if r.Len() != int(vendorInfoSize) { |
| return nil, fmt.Errorf("reading vendor info, expected %d remaining bytes, got %d", vendorInfoSize, r.Len()) |
| } |
| return &e, nil |
| } |
| |
| type digest struct { |
| hash crypto.Hash |
| data []byte |
| } |
| |
| type rawEvent struct { |
| sequence int |
| index int |
| typ EventType |
| data []byte |
| digests []digest |
| } |
| |
| // TPM 1.2 event log format. See "5.1 SHA1 Event Log Entry Format" |
| // https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15 |
| type rawEventHeader struct { |
| PCRIndex uint32 |
| Type uint32 |
| Digest [20]byte |
| EventSize uint32 |
| } |
| |
| type eventSizeErr struct { |
| eventSize uint32 |
| logSize int |
| } |
| |
| func (e *eventSizeErr) Error() string { |
| return fmt.Sprintf("event data size (%d bytes) is greater than remaining measurement log (%d bytes)", e.eventSize, e.logSize) |
| } |
| |
| func parseRawEvent(r *bytes.Buffer, specID *specIDEvent) (event rawEvent, err error) { |
| var h rawEventHeader |
| if err = binary.Read(r, binary.LittleEndian, &h); err != nil { |
| return event, err |
| } |
| if h.EventSize == 0 { |
| return event, errors.New("event data size is 0") |
| } |
| if h.EventSize > uint32(r.Len()) { |
| return event, &eventSizeErr{h.EventSize, r.Len()} |
| } |
| |
| data := make([]byte, int(h.EventSize)) |
| if _, err := io.ReadFull(r, data); err != nil { |
| return event, err |
| } |
| |
| digests := []digest{{hash: crypto.SHA1, data: h.Digest[:]}} |
| |
| return rawEvent{ |
| typ: EventType(h.Type), |
| data: data, |
| index: int(h.PCRIndex), |
| digests: digests, |
| }, nil |
| } |
| |
| // TPM 2.0 event log format. See "5.2 Crypto Agile Log Entry Format" |
| // https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15 |
| type rawEvent2Header struct { |
| PCRIndex uint32 |
| Type uint32 |
| } |
| |
| func parseRawEvent2(r *bytes.Buffer, specID *specIDEvent) (event rawEvent, err error) { |
| var h rawEvent2Header |
| |
| if err = binary.Read(r, binary.LittleEndian, &h); err != nil { |
| return event, err |
| } |
| event.typ = EventType(h.Type) |
| event.index = int(h.PCRIndex) |
| |
| // parse the event digests |
| var numDigests uint32 |
| if err := binary.Read(r, binary.LittleEndian, &numDigests); err != nil { |
| return event, err |
| } |
| |
| for i := 0; i < int(numDigests); i++ { |
| var algID uint16 |
| if err := binary.Read(r, binary.LittleEndian, &algID); err != nil { |
| return event, err |
| } |
| var digest digest |
| |
| for _, alg := range specID.algs { |
| if alg.ID != algID { |
| continue |
| } |
| if uint16(r.Len()) < alg.Size { |
| return event, fmt.Errorf("reading digest: %v", io.ErrUnexpectedEOF) |
| } |
| digest.data = make([]byte, alg.Size) |
| digest.hash = HashAlg(alg.ID).cryptoHash() |
| } |
| if len(digest.data) == 0 { |
| return event, fmt.Errorf("unknown algorithm ID %x", algID) |
| } |
| if _, err := io.ReadFull(r, digest.data); err != nil { |
| return event, err |
| } |
| event.digests = append(event.digests, digest) |
| } |
| |
| // parse event data |
| var eventSize uint32 |
| if err = binary.Read(r, binary.LittleEndian, &eventSize); err != nil { |
| return event, err |
| } |
| if eventSize == 0 { |
| return event, errors.New("event data size is 0") |
| } |
| if eventSize > uint32(r.Len()) { |
| return event, &eventSizeErr{eventSize, r.Len()} |
| } |
| event.data = make([]byte, int(eventSize)) |
| if _, err := io.ReadFull(r, event.data); err != nil { |
| return event, err |
| } |
| return event, err |
| } |