| // Copyright 2020 The Monogon Project Authors. |
| // |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| package tpm |
| |
| import ( |
| "bytes" |
| "crypto" |
| "crypto/rand" |
| "crypto/rsa" |
| "crypto/x509" |
| "fmt" |
| "io" |
| "io/ioutil" |
| "os" |
| "path/filepath" |
| "strconv" |
| "strings" |
| "sync" |
| "time" |
| |
| "github.com/gogo/protobuf/proto" |
| tpmpb "github.com/google/go-tpm-tools/proto" |
| "github.com/google/go-tpm-tools/tpm2tools" |
| "github.com/google/go-tpm/tpm2" |
| "github.com/google/go-tpm/tpmutil" |
| "github.com/pkg/errors" |
| "golang.org/x/sys/unix" |
| |
| "git.monogon.dev/source/nexantic.git/metropolis/pkg/logtree" |
| "git.monogon.dev/source/nexantic.git/metropolis/pkg/sysfs" |
| ) |
| |
| var ( |
| // SecureBootPCRs are all PCRs that measure the current Secure Boot configuration. |
| // This is what we want if we rely on secure boot to verify boot integrity. The firmware |
| // hashes the secure boot policy and custom keys into the PCR. |
| // |
| // This requires an extra step that provisions the custom keys. |
| // |
| // Some background: https://mjg59.dreamwidth.org/48897.html?thread=1847297 |
| // (the initramfs issue mentioned in the article has been solved by integrating |
| // it into the kernel binary, and we don't have a shim bootloader) |
| // |
| // PCR7 alone is not sufficient - it needs to be combined with firmware measurements. |
| SecureBootPCRs = []int{7} |
| |
| // FirmwarePCRs are alle PCRs that contain the firmware measurements |
| // See https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf |
| FirmwarePCRs = []int{ |
| 0, // platform firmware |
| 2, // option ROM code |
| 3, // option ROM configuration and data |
| } |
| |
| // FullSystemPCRs are all PCRs that contain any measurements up to the currently running EFI payload. |
| FullSystemPCRs = []int{ |
| 0, // platform firmware |
| 1, // host platform configuration |
| 2, // option ROM code |
| 3, // option ROM configuration and data |
| 4, // EFI payload |
| } |
| |
| // Using FullSystemPCRs is the most secure, but also the most brittle option since updating the EFI |
| // binary, updating the platform firmware, changing platform settings or updating the binary |
| // would invalidate the sealed data. It's annoying (but possible) to predict values for PCR4, |
| // and even more annoying for the firmware PCR (comparison to known values on similar hardware |
| // is the only thing that comes to mind). |
| // |
| // See also: https://github.com/mxre/sealkey (generates PCR4 from EFI image, BSD license) |
| // |
| // Using only SecureBootPCRs is the easiest and still reasonably secure, if we assume that the |
| // platform knows how to take care of itself (i.e. Intel Boot Guard), and that secure boot |
| // is implemented properly. It is, however, a much larger amount of code we need to trust. |
| // |
| // We do not care about PCR 5 (GPT partition table) since modifying it is harmless. All of |
| // the boot options and cmdline are hardcoded in the kernel image, and we use no bootloader, |
| // so there's no PCR for bootloader configuration or kernel cmdline. |
| ) |
| |
| var ( |
| numSRTMPCRs = 16 |
| srtmPCRs = tpm2.PCRSelection{Hash: tpm2.AlgSHA256, PCRs: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}} |
| // TCG Trusted Platform Module Library Level 00 Revision 0.99 Table 6 |
| tpmGeneratedValue = uint32(0xff544347) |
| ) |
| |
| var ( |
| // ErrNotExists is returned when no TPMs are available in the system |
| ErrNotExists = errors.New("no TPMs found") |
| // ErrNotInitialized is returned when this package was not initialized successfully |
| ErrNotInitialized = errors.New("no TPM was initialized") |
| ) |
| |
| // Singleton since the TPM is too |
| var tpm *TPM |
| |
| // We're serializing all TPM operations since it has a limited number of handles and recovering |
| // if it runs out is difficult to implement correctly. Might also be marginally more secure. |
| var lock sync.Mutex |
| |
| // TPM represents a high-level interface to a connected TPM 2.0 |
| type TPM struct { |
| logger logtree.LeveledLogger |
| device io.ReadWriteCloser |
| |
| // We keep the AK loaded since it's used fairly often and deriving it is expensive |
| akHandleCache tpmutil.Handle |
| akPublicKey crypto.PublicKey |
| } |
| |
| // Initialize finds and opens the TPM (if any). If there is no TPM available it returns |
| // ErrNotExists |
| func Initialize(logger logtree.LeveledLogger) error { |
| lock.Lock() |
| defer lock.Unlock() |
| tpmDir, err := os.Open("/sys/class/tpm") |
| if err != nil { |
| return errors.Wrap(err, "failed to open sysfs TPM class") |
| } |
| defer tpmDir.Close() |
| |
| tpms, err := tpmDir.Readdirnames(2) |
| if err != nil { |
| return errors.Wrap(err, "failed to read TPM device class") |
| } |
| |
| if len(tpms) == 0 { |
| return ErrNotExists |
| } |
| if len(tpms) > 1 { |
| // If this is changed GetMeasurementLog() needs to be updated too |
| logger.Warningf("Found more than one TPM, using the first one") |
| } |
| tpmName := tpms[0] |
| ueventData, err := sysfs.ReadUevents(filepath.Join("/sys/class/tpm", tpmName, "uevent")) |
| majorDev, err := strconv.Atoi(ueventData["MAJOR"]) |
| if err != nil { |
| return fmt.Errorf("failed to convert uevent: %w", err) |
| } |
| minorDev, err := strconv.Atoi(ueventData["MINOR"]) |
| if err != nil { |
| return fmt.Errorf("failed to convert uevent: %w", err) |
| } |
| if err := unix.Mknod("/dev/tpm", 0600|unix.S_IFCHR, int(unix.Mkdev(uint32(majorDev), uint32(minorDev)))); err != nil { |
| return errors.Wrap(err, "failed to create TPM device node") |
| } |
| device, err := tpm2.OpenTPM("/dev/tpm") |
| if err != nil { |
| return errors.Wrap(err, "failed to open TPM") |
| } |
| tpm = &TPM{ |
| device: device, |
| logger: logger, |
| } |
| return nil |
| } |
| |
| // GenerateSafeKey uses two sources of randomness (Kernel & TPM) to generate the key |
| func GenerateSafeKey(size uint16) ([]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, ErrNotInitialized |
| } |
| encryptionKeyHost := make([]byte, size) |
| if _, err := io.ReadFull(rand.Reader, encryptionKeyHost); err != nil { |
| return []byte{}, errors.Wrap(err, "failed to generate host portion of new key") |
| } |
| var encryptionKeyTPM []byte |
| for i := 48; i > 0; i-- { |
| tpmKeyPart, err := tpm2.GetRandom(tpm.device, size-uint16(len(encryptionKeyTPM))) |
| if err != nil { |
| return []byte{}, errors.Wrap(err, "failed to generate TPM portion of new key") |
| } |
| encryptionKeyTPM = append(encryptionKeyTPM, tpmKeyPart...) |
| if len(encryptionKeyTPM) >= int(size) { |
| break |
| } |
| } |
| |
| if len(encryptionKeyTPM) != int(size) { |
| return []byte{}, fmt.Errorf("got incorrect amount of TPM randomess: %v, requested %v", len(encryptionKeyTPM), size) |
| } |
| |
| encryptionKey := make([]byte, size) |
| for i := uint16(0); i < size; i++ { |
| encryptionKey[i] = encryptionKeyHost[i] ^ encryptionKeyTPM[i] |
| } |
| return encryptionKey, nil |
| } |
| |
| // Seal seals sensitive data and only allows access if the current platform configuration in |
| // matches the one the data was sealed on. |
| func Seal(data []byte, pcrs []int) ([]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, ErrNotInitialized |
| } |
| srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) |
| if err != nil { |
| return []byte{}, errors.Wrap(err, "failed to load TPM SRK") |
| } |
| defer srk.Close() |
| sealedKey, err := srk.Seal(pcrs, data) |
| sealedKeyRaw, err := proto.Marshal(sealedKey) |
| if err != nil { |
| return []byte{}, errors.Wrapf(err, "failed to marshal sealed data") |
| } |
| return sealedKeyRaw, nil |
| } |
| |
| // Unseal unseals sensitive data if the current platform configuration allows and sealing constraints |
| // allow it. |
| func Unseal(data []byte) ([]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, ErrNotInitialized |
| } |
| srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) |
| if err != nil { |
| return []byte{}, errors.Wrap(err, "failed to load TPM SRK") |
| } |
| defer srk.Close() |
| |
| var sealedKey tpmpb.SealedBytes |
| if err := proto.Unmarshal(data, &sealedKey); err != nil { |
| return []byte{}, errors.Wrap(err, "failed to decode sealed data") |
| } |
| // Logging this for auditing purposes |
| pcrList := []string{} |
| for _, pcr := range sealedKey.Pcrs { |
| pcrList = append(pcrList, string(pcr)) |
| } |
| tpm.logger.Infof("Attempting to unseal data protected with PCRs %s", strings.Join(pcrList, ",")) |
| unsealedData, err := srk.Unseal(&sealedKey) |
| if err != nil { |
| return []byte{}, errors.Wrap(err, "failed to unseal data") |
| } |
| return unsealedData, nil |
| } |
| |
| // Standard AK template for RSA2048 non-duplicatable restricted signing for attestation |
| var akTemplate = tpm2.Public{ |
| Type: tpm2.AlgRSA, |
| NameAlg: tpm2.AlgSHA256, |
| Attributes: tpm2.FlagSignerDefault, |
| RSAParameters: &tpm2.RSAParams{ |
| Sign: &tpm2.SigScheme{ |
| Alg: tpm2.AlgRSASSA, |
| Hash: tpm2.AlgSHA256, |
| }, |
| KeyBits: 2048, |
| }, |
| } |
| |
| func loadAK() error { |
| var err error |
| // Rationale: The AK is an EK-equivalent key and used only for attestation. Using a non-primary |
| // key here would require us to store the wrapped version somewhere, which is inconvenient. |
| // This being a primary key in the Endorsement hierarchy means that it can always be recreated |
| // and can never be "destroyed". Under our security model this is of no concern since we identify |
| // a node by its IK (Identity Key) which we can destroy. |
| tpm.akHandleCache, tpm.akPublicKey, err = tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, |
| tpm2.PCRSelection{}, "", "", akTemplate) |
| return err |
| } |
| |
| // Process documented in TCG EK Credential Profile 2.2.1 |
| func loadEK() (tpmutil.Handle, crypto.PublicKey, error) { |
| // The EK is a primary key which is supposed to be certified by the manufacturer of the TPM. |
| // Its public attributes are standardized in TCG EK Credential Profile 2.0 Table 1. These need |
| // to match exactly or we aren't getting the key the manufacturere signed. tpm2tools contains |
| // such a template already, so we're using that instead of redoing it ourselves. |
| // This ignores the more complicated ways EKs can be specified, the additional stuff you can do |
| // is just absolutely crazy (see 2.2.1.2 onward) |
| return tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, |
| tpm2.PCRSelection{}, "", "", tpm2tools.DefaultEKTemplateRSA()) |
| } |
| |
| // GetAKPublic gets the TPM2T_PUBLIC of the AK key |
| func GetAKPublic() ([]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, ErrNotInitialized |
| } |
| if tpm.akHandleCache == tpmutil.Handle(0) { |
| if err := loadAK(); err != nil { |
| return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) |
| } |
| } |
| public, _, _, err := tpm2.ReadPublic(tpm.device, tpm.akHandleCache) |
| if err != nil { |
| return []byte{}, err |
| } |
| return public.Encode() |
| } |
| |
| // TCG TPM v2.0 Provisioning Guidance v1.0 7.8 Table 2 and |
| // TCG EK Credential Profile v2.1 2.2.1.4 de-facto Standard for Windows |
| // These are both non-normative and reference Windows 10 documentation that's no longer available :( |
| // But in practice this is what people are using, so if it's normative or not doesn't really matter |
| const ekCertHandle = 0x01c00002 |
| |
| // GetEKPublic gets the public key and (if available) Certificate of the EK |
| func GetEKPublic() ([]byte, []byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, []byte{}, ErrNotInitialized |
| } |
| ekHandle, publicRaw, err := loadEK() |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to load EK primary key: %w", err) |
| } |
| defer tpm2.FlushContext(tpm.device, ekHandle) |
| // Don't question the use of HandleOwner, that's the Standardâ„¢ |
| ekCertRaw, err := tpm2.NVReadEx(tpm.device, ekCertHandle, tpm2.HandleOwner, "", 0) |
| if err != nil { |
| return []byte{}, []byte{}, err |
| } |
| |
| publicKey, err := x509.MarshalPKIXPublicKey(publicRaw) |
| if err != nil { |
| return []byte{}, []byte{}, err |
| } |
| |
| return publicKey, ekCertRaw, nil |
| } |
| |
| // MakeAKChallenge generates a challenge for TPM residency and attributes of the AK |
| func MakeAKChallenge(ekPubKey, akPub []byte, nonce []byte) ([]byte, []byte, error) { |
| ekPubKeyData, err := x509.ParsePKIXPublicKey(ekPubKey) |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to decode EK pubkey: %w", err) |
| } |
| akPubData, err := tpm2.DecodePublic(akPub) |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to decode AK public part: %w", err) |
| } |
| // Make sure we're attesting the right attributes (in particular Restricted) |
| if !akPubData.MatchesTemplate(akTemplate) { |
| return []byte{}, []byte{}, errors.New("the key being challenged is not a valid AK") |
| } |
| akName, err := akPubData.Name() |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to derive AK name: %w", err) |
| } |
| return generateRSA(akName.Digest, ekPubKeyData.(*rsa.PublicKey), 16, nonce, rand.Reader) |
| } |
| |
| // SolveAKChallenge solves a challenge for TPM residency of the AK |
| func SolveAKChallenge(credBlob, secretChallenge []byte) ([]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, ErrNotInitialized |
| } |
| if tpm.akHandleCache == tpmutil.Handle(0) { |
| if err := loadAK(); err != nil { |
| return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) |
| } |
| } |
| |
| ekHandle, _, err := loadEK() |
| if err != nil { |
| return []byte{}, fmt.Errorf("failed to load EK: %w", err) |
| } |
| defer tpm2.FlushContext(tpm.device, ekHandle) |
| |
| // This is necessary since the EK requires an endorsement handle policy in its session |
| // For us this is stupid because we keep all hierarchies open anyways since a) we cannot safely |
| // store secrets on the OS side pre-global unlock and b) it makes no sense in this security model |
| // since an uncompromised host OS will not let an untrusted entity attest as itself and a |
| // compromised OS can either not pass PCR policy checks or the game's already over (you |
| // successfully runtime-exploited a production Metropolis node) |
| endorsementSession, _, err := tpm2.StartAuthSession( |
| tpm.device, |
| tpm2.HandleNull, |
| tpm2.HandleNull, |
| make([]byte, 16), |
| nil, |
| tpm2.SessionPolicy, |
| tpm2.AlgNull, |
| tpm2.AlgSHA256) |
| if err != nil { |
| panic(err) |
| } |
| defer tpm2.FlushContext(tpm.device, endorsementSession) |
| |
| _, err = tpm2.PolicySecret(tpm.device, tpm2.HandleEndorsement, tpm2.AuthCommand{Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, endorsementSession, nil, nil, nil, 0) |
| if err != nil { |
| return []byte{}, fmt.Errorf("failed to make a policy secret session: %w", err) |
| } |
| |
| for { |
| solution, err := tpm2.ActivateCredentialUsingAuth(tpm.device, []tpm2.AuthCommand{ |
| {Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, // Use standard no-password authentication |
| {Session: endorsementSession, Attributes: tpm2.AttrContinueSession}, // Use a full policy session for the EK |
| }, tpm.akHandleCache, ekHandle, credBlob, secretChallenge) |
| if warn, ok := err.(tpm2.Warning); ok && warn.Code == tpm2.RCRetry { |
| time.Sleep(100 * time.Millisecond) |
| continue |
| } |
| return solution, err |
| } |
| } |
| |
| // FlushTransientHandles flushes all sessions and non-persistent handles |
| func FlushTransientHandles() error { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return ErrNotInitialized |
| } |
| flushHandleTypes := []tpm2.HandleType{tpm2.HandleTypeTransient, tpm2.HandleTypeLoadedSession, tpm2.HandleTypeSavedSession} |
| for _, handleType := range flushHandleTypes { |
| handles, err := tpm2tools.Handles(tpm.device, handleType) |
| if err != nil { |
| return err |
| } |
| for _, handle := range handles { |
| if err := tpm2.FlushContext(tpm.device, handle); err != nil { |
| return err |
| } |
| } |
| } |
| return nil |
| } |
| |
| // AttestPlatform performs a PCR quote using the AK and returns the quote and its signature |
| func AttestPlatform(nonce []byte) ([]byte, []byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return []byte{}, []byte{}, ErrNotInitialized |
| } |
| if tpm.akHandleCache == tpmutil.Handle(0) { |
| if err := loadAK(); err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) |
| } |
| } |
| // We only care about SHA256 since SHA1 is weak. This is supported on at least GCE and |
| // Intel / AMD fTPM, which is good enough for now. Alg is null because that would just hash the |
| // nonce, which is dumb. |
| quote, signature, err := tpm2.Quote(tpm.device, tpm.akHandleCache, "", "", nonce, srtmPCRs, |
| tpm2.AlgNull) |
| if err != nil { |
| return []byte{}, []byte{}, fmt.Errorf("failed to quote PCRs: %w", err) |
| } |
| return quote, signature.RSA.Signature, err |
| } |
| |
| // VerifyAttestPlatform verifies a given attestation. You can rely on all data coming back as being |
| // from the TPM on which the AK is bound to. |
| func VerifyAttestPlatform(nonce, akPub, quote, signature []byte) (*tpm2.AttestationData, error) { |
| hash := crypto.SHA256.New() |
| hash.Write(quote) |
| |
| akPubData, err := tpm2.DecodePublic(akPub) |
| if err != nil { |
| return nil, fmt.Errorf("invalid AK: %w", err) |
| } |
| akPublicKey, err := akPubData.Key() |
| if err != nil { |
| return nil, fmt.Errorf("invalid AK: %w", err) |
| } |
| akRSAKey, ok := akPublicKey.(*rsa.PublicKey) |
| if !ok { |
| return nil, errors.New("invalid AK: invalid key type") |
| } |
| |
| if err := rsa.VerifyPKCS1v15(akRSAKey, crypto.SHA256, hash.Sum(nil), signature); err != nil { |
| return nil, err |
| } |
| |
| quoteData, err := tpm2.DecodeAttestationData(quote) |
| if err != nil { |
| return nil, err |
| } |
| // quoteData.Magic works together with the TPM's Restricted key attribute. If this attribute is set |
| // (which it needs to be for the AK to be considered valid) the TPM will not sign external data |
| // having this prefix with such a key. Only data that originates inside the TPM like quotes and |
| // key certifications can have this prefix and sill be signed by a restricted key. This check |
| // is thus vital, otherwise somebody can just feed the TPM an arbitrary attestation to sign with |
| // its AK and this function will happily accept the forged attestation. |
| if quoteData.Magic != tpmGeneratedValue { |
| return nil, errors.New("invalid TPM quote: data marker for internal data not set - forged attestation") |
| } |
| if quoteData.Type != tpm2.TagAttestQuote { |
| return nil, errors.New("invalid TPM qoute: not a TPM quote") |
| } |
| if !bytes.Equal(quoteData.ExtraData, nonce) { |
| return nil, errors.New("invalid TPM quote: wrong nonce") |
| } |
| |
| return quoteData, nil |
| } |
| |
| // GetPCRs returns all SRTM PCRs in-order |
| func GetPCRs() ([][]byte, error) { |
| lock.Lock() |
| defer lock.Unlock() |
| if tpm == nil { |
| return [][]byte{}, ErrNotInitialized |
| } |
| pcrs := make([][]byte, numSRTMPCRs) |
| |
| // The TPM can (and most do) return partial results. Let's just retry as many times as we have |
| // PCRs since each read should return at least one PCR. |
| readLoop: |
| for i := 0; i < numSRTMPCRs; i++ { |
| sel := tpm2.PCRSelection{Hash: tpm2.AlgSHA256} |
| for pcrN := 0; pcrN < numSRTMPCRs; pcrN++ { |
| if len(pcrs[pcrN]) == 0 { |
| sel.PCRs = append(sel.PCRs, pcrN) |
| } |
| } |
| |
| readPCRs, err := tpm2.ReadPCRs(tpm.device, sel) |
| if err != nil { |
| return nil, fmt.Errorf("failed to read PCRs: %w", err) |
| } |
| |
| for pcrN, pcr := range readPCRs { |
| pcrs[pcrN] = pcr |
| } |
| for _, pcr := range pcrs { |
| // If at least one PCR is still not read, continue |
| if len(pcr) == 0 { |
| continue readLoop |
| } |
| } |
| break |
| } |
| |
| return pcrs, nil |
| } |
| |
| // GetMeasurmentLog returns the binary log of all data hashed into PCRs. The result can be parsed by eventlog. |
| // As this library currently doesn't support extending PCRs it just returns the log as supplied by the EFI interface. |
| func GetMeasurementLog() ([]byte, error) { |
| return ioutil.ReadFile("/sys/kernel/security/tpm0/binary_bios_measurements") |
| } |