|  | // Copyright 2020 The Monogon Project Authors. | 
|  | // | 
|  | // SPDX-License-Identifier: Apache-2.0 | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | package tpm | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "crypto" | 
|  | "crypto/rand" | 
|  | "crypto/rsa" | 
|  | "crypto/x509" | 
|  | "fmt" | 
|  | "io" | 
|  | "os" | 
|  | "path/filepath" | 
|  | "strconv" | 
|  | "strings" | 
|  | "sync" | 
|  | "time" | 
|  |  | 
|  | "github.com/golang/protobuf/proto" | 
|  | tpm2tools "github.com/google/go-tpm-tools/client" | 
|  | "github.com/google/go-tpm/tpm2" | 
|  | "github.com/google/go-tpm/tpmutil" | 
|  | "github.com/pkg/errors" | 
|  | "golang.org/x/crypto/nacl/secretbox" | 
|  | "golang.org/x/sys/unix" | 
|  |  | 
|  | "source.monogon.dev/metropolis/pkg/logtree" | 
|  | "source.monogon.dev/metropolis/pkg/sysfs" | 
|  | tpmpb "source.monogon.dev/metropolis/pkg/tpm/proto" | 
|  | ) | 
|  |  | 
|  | var ( | 
|  | // SecureBootPCRs are all PCRs that measure the current Secure Boot | 
|  | // configuration.  This is what we want if we rely on secure boot to verify | 
|  | // boot integrity. The firmware hashes the secure boot policy and custom | 
|  | // keys into the PCR. | 
|  | // | 
|  | // This requires an extra step that provisions the custom keys. | 
|  | // | 
|  | // Some background: https://mjg59.dreamwidth.org/48897.html?thread=1847297 | 
|  | // (the initramfs issue mentioned in the article has been solved by | 
|  | // integrating it into the kernel binary, and we don't have a shim | 
|  | // bootloader) | 
|  | // | 
|  | // PCR7 alone is not sufficient - it needs to be combined with firmware | 
|  | // measurements. | 
|  | SecureBootPCRs = []int{7} | 
|  |  | 
|  | // FirmwarePCRs are alle PCRs that contain the firmware measurements. See: | 
|  | //   https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf | 
|  | FirmwarePCRs = []int{ | 
|  | 0, // platform firmware | 
|  | 2, // option ROM code | 
|  | 3, // option ROM configuration and data | 
|  | } | 
|  |  | 
|  | // FullSystemPCRs are all PCRs that contain any measurements up to the | 
|  | // currently running EFI payload. | 
|  | FullSystemPCRs = []int{ | 
|  | 0, // platform firmware | 
|  | 1, // host platform configuration | 
|  | 2, // option ROM code | 
|  | 3, // option ROM configuration and data | 
|  | 4, // EFI payload | 
|  | } | 
|  |  | 
|  | // Using FullSystemPCRs is the most secure, but also the most brittle | 
|  | // option since updating the EFI binary, updating the platform firmware, | 
|  | // changing platform settings or updating the binary would invalidate the | 
|  | // sealed data. It's annoying (but possible) to predict values for PCR4, | 
|  | // and even more annoying for the firmware PCR (comparison to known values | 
|  | // on similar hardware is the only thing that comes to mind). | 
|  | // | 
|  | // See also: https://github.com/mxre/sealkey (generates PCR4 from EFI | 
|  | // image, BSD license) | 
|  | // | 
|  | // Using only SecureBootPCRs is the easiest and still reasonably secure, if | 
|  | // we assume that the platform knows how to take care of itself (i.e. Intel | 
|  | // Boot Guard), and that secure boot is implemented properly. It is, | 
|  | // however, a much larger amount of code we need to trust. | 
|  | // | 
|  | // We do not care about PCR 5 (GPT partition table) since modifying it is | 
|  | // harmless. All of the boot options and cmdline are hardcoded in the | 
|  | // kernel image, and we use no bootloader, so there's no PCR for bootloader | 
|  | // configuration or kernel cmdline. | 
|  | ) | 
|  |  | 
|  | var ( | 
|  | numSRTMPCRs = 16 | 
|  | srtmPCRs    = tpm2.PCRSelection{Hash: tpm2.AlgSHA256, PCRs: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}} | 
|  | // TCG Trusted Platform Module Library Level 00 Revision 0.99 Table 6 | 
|  | tpmGeneratedValue = uint32(0xff544347) | 
|  | ) | 
|  |  | 
|  | var ( | 
|  | // ErrNotExists is returned when no TPMs are available in the system | 
|  | ErrNotExists = errors.New("no TPMs found") | 
|  | // ErrNotInitialized is returned when this package was not initialized | 
|  | // successfully | 
|  | ErrNotInitialized = errors.New("no TPM was initialized") | 
|  | ) | 
|  |  | 
|  | // Singleton since the TPM is too | 
|  | var tpm *TPM | 
|  |  | 
|  | // We're serializing all TPM operations since it has a limited number of | 
|  | // handles and recovering if it runs out is difficult to implement correctly. | 
|  | // Might also be marginally more secure. | 
|  | var lock sync.Mutex | 
|  |  | 
|  | // TPM represents a high-level interface to a connected TPM 2.0 | 
|  | type TPM struct { | 
|  | logger logtree.LeveledLogger | 
|  | device io.ReadWriteCloser | 
|  |  | 
|  | // We keep the AK loaded since it's used fairly often and deriving it is | 
|  | // expensive | 
|  | akHandleCache tpmutil.Handle | 
|  | akPublicKey   crypto.PublicKey | 
|  | } | 
|  |  | 
|  | // Initialize finds and opens the TPM (if any). If there is no TPM available it | 
|  | // returns ErrNotExists | 
|  | func Initialize(logger logtree.LeveledLogger) error { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | tpmDir, err := os.Open("/sys/class/tpm") | 
|  | if err != nil { | 
|  | return errors.Wrap(err, "failed to open sysfs TPM class") | 
|  | } | 
|  | defer tpmDir.Close() | 
|  |  | 
|  | tpms, err := tpmDir.Readdirnames(2) | 
|  | if err != nil { | 
|  | return errors.Wrap(err, "failed to read TPM device class") | 
|  | } | 
|  |  | 
|  | if len(tpms) == 0 { | 
|  | return ErrNotExists | 
|  | } | 
|  | if len(tpms) > 1 { | 
|  | // If this is changed GetMeasurementLog() needs to be updated too | 
|  | logger.Warningf("Found more than one TPM, using the first one") | 
|  | } | 
|  | tpmName := tpms[0] | 
|  | ueventData, err := sysfs.ReadUevents(filepath.Join("/sys/class/tpm", tpmName, "uevent")) | 
|  | majorDev, err := strconv.Atoi(ueventData["MAJOR"]) | 
|  | if err != nil { | 
|  | return fmt.Errorf("failed to convert uevent: %w", err) | 
|  | } | 
|  | minorDev, err := strconv.Atoi(ueventData["MINOR"]) | 
|  | if err != nil { | 
|  | return fmt.Errorf("failed to convert uevent: %w", err) | 
|  | } | 
|  | if err := unix.Mknod("/dev/tpm", 0600|unix.S_IFCHR, int(unix.Mkdev(uint32(majorDev), uint32(minorDev)))); err != nil { | 
|  | return errors.Wrap(err, "failed to create TPM device node") | 
|  | } | 
|  | device, err := tpm2.OpenTPM("/dev/tpm") | 
|  | if err != nil { | 
|  | return errors.Wrap(err, "failed to open TPM") | 
|  | } | 
|  | tpm = &TPM{ | 
|  | device: device, | 
|  | logger: logger, | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // IsInitialized returns true if Initialize was called an at least one | 
|  | // TPM 2.0 was found and initialized. Otherwise it returns false. | 
|  | func IsInitialized() bool { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | return !(tpm == nil) | 
|  | } | 
|  |  | 
|  | // GenerateSafeKey uses two sources of randomness (Kernel & TPM) to generate | 
|  | // the key | 
|  | func GenerateSafeKey(size uint16) ([]byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, ErrNotInitialized | 
|  | } | 
|  | encryptionKeyHost := make([]byte, size) | 
|  | if _, err := io.ReadFull(rand.Reader, encryptionKeyHost); err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to generate host portion of new key") | 
|  | } | 
|  | var encryptionKeyTPM []byte | 
|  | for i := 48; i > 0; i-- { | 
|  | tpmKeyPart, err := tpm2.GetRandom(tpm.device, size-uint16(len(encryptionKeyTPM))) | 
|  | if err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to generate TPM portion of new key") | 
|  | } | 
|  | encryptionKeyTPM = append(encryptionKeyTPM, tpmKeyPart...) | 
|  | if len(encryptionKeyTPM) >= int(size) { | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | if len(encryptionKeyTPM) != int(size) { | 
|  | return []byte{}, fmt.Errorf("got incorrect amount of TPM randomess: %v, requested %v", len(encryptionKeyTPM), size) | 
|  | } | 
|  |  | 
|  | encryptionKey := make([]byte, size) | 
|  | for i := uint16(0); i < size; i++ { | 
|  | encryptionKey[i] = encryptionKeyHost[i] ^ encryptionKeyTPM[i] | 
|  | } | 
|  | return encryptionKey, nil | 
|  | } | 
|  |  | 
|  | // Seal seals sensitive data and only allows access if the current platform | 
|  | // configuration in matches the one the data was sealed on. | 
|  | func Seal(data []byte, pcrs []int) ([]byte, error) { | 
|  | // Generate a key and use secretbox to encrypt and authenticate the actual | 
|  | // payload as go-tpm2 uses a raw seal operation limiting payload size to | 
|  | // 128 bytes which is insufficient. | 
|  | boxKey, err := GenerateSafeKey(32) | 
|  | if err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to generate boxKey: %w", err) | 
|  | } | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) | 
|  | if err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to load TPM SRK") | 
|  | } | 
|  | defer srk.Close() | 
|  | var boxKeyArr [32]byte | 
|  | copy(boxKeyArr[:], boxKey) | 
|  | // Nonce is not used as we're generating a new boxKey for every operation, | 
|  | // therefore we can just leave it all-zero. | 
|  | var unusedNonce [24]byte | 
|  | encryptedData := secretbox.Seal(nil, data, &unusedNonce, &boxKeyArr) | 
|  | sealedKey, err := srk.Seal(boxKey, tpm2tools.SealOpts{Current: tpm2.PCRSelection{Hash: tpm2.AlgSHA256, PCRs: pcrs}}) | 
|  | if err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to seal boxKey: %w", err) | 
|  | } | 
|  | sealedBytes := tpmpb.ExtendedSealedBytes{ | 
|  | SealedKey:        sealedKey, | 
|  | EncryptedPayload: encryptedData, | 
|  | } | 
|  | rawSealedBytes, err := proto.Marshal(&sealedBytes) | 
|  | if err != nil { | 
|  | return []byte{}, errors.Wrapf(err, "failed to marshal sealed data") | 
|  | } | 
|  | return rawSealedBytes, nil | 
|  | } | 
|  |  | 
|  | // Unseal unseals sensitive data if the current platform configuration allows | 
|  | // and sealing constraints allow it. | 
|  | func Unseal(data []byte) ([]byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, ErrNotInitialized | 
|  | } | 
|  | srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) | 
|  | if err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to load TPM SRK") | 
|  | } | 
|  | defer srk.Close() | 
|  |  | 
|  | var sealedBytes tpmpb.ExtendedSealedBytes | 
|  | if err := proto.Unmarshal(data, &sealedBytes); err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to unmarshal sealed data") | 
|  | } | 
|  | if sealedBytes.SealedKey == nil { | 
|  | return []byte{}, fmt.Errorf("sealed data structure is invalid: no sealed key") | 
|  | } | 
|  | // Logging this for auditing purposes | 
|  | pcrList := []string{} | 
|  | for _, pcr := range sealedBytes.SealedKey.Pcrs { | 
|  | pcrList = append(pcrList, string(pcr)) | 
|  | } | 
|  | tpm.logger.Infof("Attempting to unseal key protected with PCRs %s", strings.Join(pcrList, ",")) | 
|  | unsealedKey, err := srk.Unseal(sealedBytes.SealedKey, tpm2tools.UnsealOpts{}) | 
|  | if err != nil { | 
|  | return []byte{}, errors.Wrap(err, "failed to unseal key") | 
|  | } | 
|  | var key [32]byte | 
|  | if len(unsealedKey) != len(key) { | 
|  | return []byte{}, fmt.Errorf("unsealed key has wrong length: expected %v bytes, got %v", len(key), len(unsealedKey)) | 
|  | } | 
|  | copy(key[:], unsealedKey) | 
|  | var unusedNonce [24]byte | 
|  | payload, ok := secretbox.Open(nil, sealedBytes.EncryptedPayload, &unusedNonce, &key) | 
|  | if !ok { | 
|  | return []byte{}, errors.New("payload box cannot be opened") | 
|  | } | 
|  | return payload, nil | 
|  | } | 
|  |  | 
|  | // Standard AK template for RSA2048 non-duplicatable restricted signing for | 
|  | // attestation | 
|  | var akTemplate = tpm2.Public{ | 
|  | Type:       tpm2.AlgRSA, | 
|  | NameAlg:    tpm2.AlgSHA256, | 
|  | Attributes: tpm2.FlagSignerDefault, | 
|  | RSAParameters: &tpm2.RSAParams{ | 
|  | Sign: &tpm2.SigScheme{ | 
|  | Alg:  tpm2.AlgRSASSA, | 
|  | Hash: tpm2.AlgSHA256, | 
|  | }, | 
|  | KeyBits: 2048, | 
|  | }, | 
|  | } | 
|  |  | 
|  | func loadAK() error { | 
|  | var err error | 
|  | // Rationale: The AK is an EK-equivalent key and used only for attestation. | 
|  | // Using a non-primary key here would require us to store the wrapped | 
|  | // version somewhere, which is inconvenient.  This being a primary key in | 
|  | // the Endorsement hierarchy means that it can always be recreated and can | 
|  | // never be "destroyed". Under our security model this is of no concern | 
|  | // since we identify a node by its IK (Identity Key) which we can destroy. | 
|  | tpm.akHandleCache, tpm.akPublicKey, err = tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, | 
|  | tpm2.PCRSelection{}, "", "", akTemplate) | 
|  | return err | 
|  | } | 
|  |  | 
|  | // Process documented in TCG EK Credential Profile 2.2.1 | 
|  | func loadEK() (tpmutil.Handle, crypto.PublicKey, error) { | 
|  | // The EK is a primary key which is supposed to be certified by the | 
|  | // manufacturer of the TPM.  Its public attributes are standardized in TCG | 
|  | // EK Credential Profile 2.0 Table 1. These need to match exactly or we | 
|  | // aren't getting the key the manufacturere signed. tpm2tools contains such | 
|  | // a template already, so we're using that instead of redoing it ourselves. | 
|  | // This ignores the more complicated ways EKs can be specified, the | 
|  | // additional stuff you can do is just absolutely crazy (see 2.2.1.2 | 
|  | // onward) | 
|  | return tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, | 
|  | tpm2.PCRSelection{}, "", "", tpm2tools.DefaultEKTemplateRSA()) | 
|  | } | 
|  |  | 
|  | // GetAKPublic gets the TPM2T_PUBLIC of the AK key | 
|  | func GetAKPublic() ([]byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, ErrNotInitialized | 
|  | } | 
|  | if tpm.akHandleCache == tpmutil.Handle(0) { | 
|  | if err := loadAK(); err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
|  | } | 
|  | } | 
|  | public, _, _, err := tpm2.ReadPublic(tpm.device, tpm.akHandleCache) | 
|  | if err != nil { | 
|  | return []byte{}, err | 
|  | } | 
|  | return public.Encode() | 
|  | } | 
|  |  | 
|  | // TCG TPM v2.0 Provisioning Guidance v1.0 7.8 Table 2 and TCG EK Credential | 
|  | // Profile v2.1 2.2.1.4 de-facto Standard for Windows These are both | 
|  | // non-normative and reference Windows 10 documentation that's no longer | 
|  | // available :( But in practice this is what people are using, so if it's | 
|  | // normative or not doesn't really matter | 
|  | const ekCertHandle = 0x01c00002 | 
|  |  | 
|  | // GetEKPublic gets the public key and (if available) Certificate of the EK | 
|  | func GetEKPublic() ([]byte, []byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, []byte{}, ErrNotInitialized | 
|  | } | 
|  | ekHandle, publicRaw, err := loadEK() | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to load EK primary key: %w", err) | 
|  | } | 
|  | defer tpm2.FlushContext(tpm.device, ekHandle) | 
|  | // Don't question the use of HandleOwner, that's the Standardâ„¢ | 
|  | ekCertRaw, err := tpm2.NVReadEx(tpm.device, ekCertHandle, tpm2.HandleOwner, "", 0) | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, err | 
|  | } | 
|  |  | 
|  | publicKey, err := x509.MarshalPKIXPublicKey(publicRaw) | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, err | 
|  | } | 
|  |  | 
|  | return publicKey, ekCertRaw, nil | 
|  | } | 
|  |  | 
|  | // MakeAKChallenge generates a challenge for TPM residency and attributes of | 
|  | // the AK | 
|  | func MakeAKChallenge(ekPubKey, akPub []byte, nonce []byte) ([]byte, []byte, error) { | 
|  | ekPubKeyData, err := x509.ParsePKIXPublicKey(ekPubKey) | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to decode EK pubkey: %w", err) | 
|  | } | 
|  | akPubData, err := tpm2.DecodePublic(akPub) | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to decode AK public part: %w", err) | 
|  | } | 
|  | // Make sure we're attesting the right attributes (in particular Restricted) | 
|  | if !akPubData.MatchesTemplate(akTemplate) { | 
|  | return []byte{}, []byte{}, errors.New("the key being challenged is not a valid AK") | 
|  | } | 
|  | akName, err := akPubData.Name() | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to derive AK name: %w", err) | 
|  | } | 
|  | return generateRSA(akName.Digest, ekPubKeyData.(*rsa.PublicKey), 16, nonce, rand.Reader) | 
|  | } | 
|  |  | 
|  | // SolveAKChallenge solves a challenge for TPM residency of the AK | 
|  | func SolveAKChallenge(credBlob, secretChallenge []byte) ([]byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, ErrNotInitialized | 
|  | } | 
|  | if tpm.akHandleCache == tpmutil.Handle(0) { | 
|  | if err := loadAK(); err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
|  | } | 
|  | } | 
|  |  | 
|  | ekHandle, _, err := loadEK() | 
|  | if err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to load EK: %w", err) | 
|  | } | 
|  | defer tpm2.FlushContext(tpm.device, ekHandle) | 
|  |  | 
|  | // This is necessary since the EK requires an endorsement handle policy in | 
|  | // its session.  For us this is stupid because we keep all hierarchies open | 
|  | // anyways since a) we cannot safely store secrets on the OS side | 
|  | // pre-global unlock and b) it makes no sense in this security model since | 
|  | // an uncompromised host OS will not let an untrusted entity attest as | 
|  | // itself and a compromised OS can either not pass PCR policy checks or the | 
|  | // game's already over (you successfully runtime-exploited a production | 
|  | // Metropolis node). | 
|  | endorsementSession, _, err := tpm2.StartAuthSession( | 
|  | tpm.device, | 
|  | tpm2.HandleNull, | 
|  | tpm2.HandleNull, | 
|  | make([]byte, 16), | 
|  | nil, | 
|  | tpm2.SessionPolicy, | 
|  | tpm2.AlgNull, | 
|  | tpm2.AlgSHA256) | 
|  | if err != nil { | 
|  | panic(err) | 
|  | } | 
|  | defer tpm2.FlushContext(tpm.device, endorsementSession) | 
|  |  | 
|  | _, _, err = tpm2.PolicySecret(tpm.device, tpm2.HandleEndorsement, tpm2.AuthCommand{Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, endorsementSession, nil, nil, nil, 0) | 
|  | if err != nil { | 
|  | return []byte{}, fmt.Errorf("failed to make a policy secret session: %w", err) | 
|  | } | 
|  |  | 
|  | for { | 
|  | solution, err := tpm2.ActivateCredentialUsingAuth(tpm.device, []tpm2.AuthCommand{ | 
|  | // Use standard no-password authenatication | 
|  | {Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, | 
|  | // Use a full policy session for the EK | 
|  | {Session: endorsementSession, Attributes: tpm2.AttrContinueSession}, | 
|  | }, tpm.akHandleCache, ekHandle, credBlob, secretChallenge) | 
|  | if warn, ok := err.(tpm2.Warning); ok && warn.Code == tpm2.RCRetry { | 
|  | time.Sleep(100 * time.Millisecond) | 
|  | continue | 
|  | } | 
|  | return solution, err | 
|  | } | 
|  | } | 
|  |  | 
|  | // FlushTransientHandles flushes all sessions and non-persistent handles | 
|  | func FlushTransientHandles() error { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return ErrNotInitialized | 
|  | } | 
|  | flushHandleTypes := []tpm2.HandleType{tpm2.HandleTypeTransient, tpm2.HandleTypeLoadedSession, tpm2.HandleTypeSavedSession} | 
|  | for _, handleType := range flushHandleTypes { | 
|  | handles, err := tpm2tools.Handles(tpm.device, handleType) | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | for _, handle := range handles { | 
|  | if err := tpm2.FlushContext(tpm.device, handle); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // AttestPlatform performs a PCR quote using the AK and returns the quote and | 
|  | // its signature | 
|  | func AttestPlatform(nonce []byte) ([]byte, []byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return []byte{}, []byte{}, ErrNotInitialized | 
|  | } | 
|  | if tpm.akHandleCache == tpmutil.Handle(0) { | 
|  | if err := loadAK(); err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
|  | } | 
|  | } | 
|  | // We only care about SHA256 since SHA1 is weak. This is supported on at | 
|  | // least GCE and Intel / AMD fTPM, which is good enough for now. Alg is | 
|  | // null because that would just hash the nonce, which is dumb. | 
|  | quote, signature, err := tpm2.Quote(tpm.device, tpm.akHandleCache, "", "", nonce, srtmPCRs, | 
|  | tpm2.AlgNull) | 
|  | if err != nil { | 
|  | return []byte{}, []byte{}, fmt.Errorf("failed to quote PCRs: %w", err) | 
|  | } | 
|  | return quote, signature.RSA.Signature, err | 
|  | } | 
|  |  | 
|  | // VerifyAttestPlatform verifies a given attestation. You can rely on all data | 
|  | // coming back as being from the TPM on which the AK is bound to. | 
|  | func VerifyAttestPlatform(nonce, akPub, quote, signature []byte) (*tpm2.AttestationData, error) { | 
|  | hash := crypto.SHA256.New() | 
|  | hash.Write(quote) | 
|  |  | 
|  | akPubData, err := tpm2.DecodePublic(akPub) | 
|  | if err != nil { | 
|  | return nil, fmt.Errorf("invalid AK: %w", err) | 
|  | } | 
|  | akPublicKey, err := akPubData.Key() | 
|  | if err != nil { | 
|  | return nil, fmt.Errorf("invalid AK: %w", err) | 
|  | } | 
|  | akRSAKey, ok := akPublicKey.(*rsa.PublicKey) | 
|  | if !ok { | 
|  | return nil, errors.New("invalid AK: invalid key type") | 
|  | } | 
|  |  | 
|  | if err := rsa.VerifyPKCS1v15(akRSAKey, crypto.SHA256, hash.Sum(nil), signature); err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | quoteData, err := tpm2.DecodeAttestationData(quote) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | // quoteData.Magic works together with the TPM's Restricted key attribute. | 
|  | // If this attribute is set (which it needs to be for the AK to be | 
|  | // considered valid) the TPM will not sign external data having this prefix | 
|  | // with such a key. Only data that originates inside the TPM like quotes | 
|  | // and key certifications can have this prefix and sill be signed by a | 
|  | // restricted key. This check is thus vital, otherwise somebody can just | 
|  | // feed the TPM an arbitrary attestation to sign with its AK and this | 
|  | // function will happily accept the forged attestation. | 
|  | if quoteData.Magic != tpmGeneratedValue { | 
|  | return nil, errors.New("invalid TPM quote: data marker for internal data not set - forged attestation") | 
|  | } | 
|  | if quoteData.Type != tpm2.TagAttestQuote { | 
|  | return nil, errors.New("invalid TPM qoute: not a TPM quote") | 
|  | } | 
|  | if !bytes.Equal(quoteData.ExtraData, nonce) { | 
|  | return nil, errors.New("invalid TPM quote: wrong nonce") | 
|  | } | 
|  |  | 
|  | return quoteData, nil | 
|  | } | 
|  |  | 
|  | // GetPCRs returns all SRTM PCRs in-order | 
|  | func GetPCRs() ([][]byte, error) { | 
|  | lock.Lock() | 
|  | defer lock.Unlock() | 
|  | if tpm == nil { | 
|  | return [][]byte{}, ErrNotInitialized | 
|  | } | 
|  | pcrs := make([][]byte, numSRTMPCRs) | 
|  |  | 
|  | // The TPM can (and most do) return partial results. Let's just retry as | 
|  | // many times as we have PCRs since each read should return at least one | 
|  | // PCR. | 
|  | readLoop: | 
|  | for i := 0; i < numSRTMPCRs; i++ { | 
|  | sel := tpm2.PCRSelection{Hash: tpm2.AlgSHA256} | 
|  | for pcrN := 0; pcrN < numSRTMPCRs; pcrN++ { | 
|  | if len(pcrs[pcrN]) == 0 { | 
|  | sel.PCRs = append(sel.PCRs, pcrN) | 
|  | } | 
|  | } | 
|  |  | 
|  | readPCRs, err := tpm2.ReadPCRs(tpm.device, sel) | 
|  | if err != nil { | 
|  | return nil, fmt.Errorf("failed to read PCRs: %w", err) | 
|  | } | 
|  |  | 
|  | for pcrN, pcr := range readPCRs { | 
|  | pcrs[pcrN] = pcr | 
|  | } | 
|  | for _, pcr := range pcrs { | 
|  | // If at least one PCR is still not read, continue | 
|  | if len(pcr) == 0 { | 
|  | continue readLoop | 
|  | } | 
|  | } | 
|  | break | 
|  | } | 
|  |  | 
|  | return pcrs, nil | 
|  | } | 
|  |  | 
|  | // GetMeasurmentLog returns the binary log of all data hashed into PCRs. The | 
|  | // result can be parsed by eventlog.  As this library currently doesn't support | 
|  | // extending PCRs it just returns the log as supplied by the EFI interface. | 
|  | func GetMeasurementLog() ([]byte, error) { | 
|  | return os.ReadFile("/sys/kernel/security/tpm0/binary_bios_measurements") | 
|  | } |