| // Copyright 2020 The Monogon Project Authors. | 
 | // | 
 | // SPDX-License-Identifier: Apache-2.0 | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | package tpm | 
 |  | 
 | import ( | 
 | 	"bytes" | 
 | 	"crypto" | 
 | 	"crypto/rand" | 
 | 	"crypto/rsa" | 
 | 	"crypto/x509" | 
 | 	"fmt" | 
 | 	"io" | 
 | 	"io/ioutil" | 
 | 	"os" | 
 | 	"path/filepath" | 
 | 	"strconv" | 
 | 	"strings" | 
 | 	"sync" | 
 | 	"time" | 
 |  | 
 | 	"github.com/gogo/protobuf/proto" | 
 | 	tpmpb "github.com/google/go-tpm-tools/proto" | 
 | 	"github.com/google/go-tpm-tools/tpm2tools" | 
 | 	"github.com/google/go-tpm/tpm2" | 
 | 	"github.com/google/go-tpm/tpmutil" | 
 | 	"github.com/pkg/errors" | 
 | 	"golang.org/x/sys/unix" | 
 |  | 
 | 	"source.monogon.dev/metropolis/pkg/logtree" | 
 | 	"source.monogon.dev/metropolis/pkg/sysfs" | 
 | ) | 
 |  | 
 | var ( | 
 | 	// SecureBootPCRs are all PCRs that measure the current Secure Boot configuration. | 
 | 	// This is what we want if we rely on secure boot to verify boot integrity. The firmware | 
 | 	// hashes the secure boot policy and custom keys into the PCR. | 
 | 	// | 
 | 	// This requires an extra step that provisions the custom keys. | 
 | 	// | 
 | 	// Some background: https://mjg59.dreamwidth.org/48897.html?thread=1847297 | 
 | 	// (the initramfs issue mentioned in the article has been solved by integrating | 
 | 	// it into the kernel binary, and we don't have a shim bootloader) | 
 | 	// | 
 | 	// PCR7 alone is not sufficient - it needs to be combined with firmware measurements. | 
 | 	SecureBootPCRs = []int{7} | 
 |  | 
 | 	// FirmwarePCRs are alle PCRs that contain the firmware measurements | 
 | 	// See https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf | 
 | 	FirmwarePCRs = []int{ | 
 | 		0, // platform firmware | 
 | 		2, // option ROM code | 
 | 		3, // option ROM configuration and data | 
 | 	} | 
 |  | 
 | 	// FullSystemPCRs are all PCRs that contain any measurements up to the currently running EFI payload. | 
 | 	FullSystemPCRs = []int{ | 
 | 		0, // platform firmware | 
 | 		1, // host platform configuration | 
 | 		2, // option ROM code | 
 | 		3, // option ROM configuration and data | 
 | 		4, // EFI payload | 
 | 	} | 
 |  | 
 | 	// Using FullSystemPCRs is the most secure, but also the most brittle option since updating the EFI | 
 | 	// binary, updating the platform firmware, changing platform settings or updating the binary | 
 | 	// would invalidate the sealed data. It's annoying (but possible) to predict values for PCR4, | 
 | 	// and even more annoying for the firmware PCR (comparison to known values on similar hardware | 
 | 	// is the only thing that comes to mind). | 
 | 	// | 
 | 	// See also: https://github.com/mxre/sealkey (generates PCR4 from EFI image, BSD license) | 
 | 	// | 
 | 	// Using only SecureBootPCRs is the easiest and still reasonably secure, if we assume that the | 
 | 	// platform knows how to take care of itself (i.e. Intel Boot Guard), and that secure boot | 
 | 	// is implemented properly. It is, however, a much larger amount of code we need to trust. | 
 | 	// | 
 | 	// We do not care about PCR 5 (GPT partition table) since modifying it is harmless. All of | 
 | 	// the boot options and cmdline are hardcoded in the kernel image, and we use no bootloader, | 
 | 	// so there's no PCR for bootloader configuration or kernel cmdline. | 
 | ) | 
 |  | 
 | var ( | 
 | 	numSRTMPCRs = 16 | 
 | 	srtmPCRs    = tpm2.PCRSelection{Hash: tpm2.AlgSHA256, PCRs: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}} | 
 | 	// TCG Trusted Platform Module Library Level 00 Revision 0.99 Table 6 | 
 | 	tpmGeneratedValue = uint32(0xff544347) | 
 | ) | 
 |  | 
 | var ( | 
 | 	// ErrNotExists is returned when no TPMs are available in the system | 
 | 	ErrNotExists = errors.New("no TPMs found") | 
 | 	// ErrNotInitialized is returned when this package was not initialized successfully | 
 | 	ErrNotInitialized = errors.New("no TPM was initialized") | 
 | ) | 
 |  | 
 | // Singleton since the TPM is too | 
 | var tpm *TPM | 
 |  | 
 | // We're serializing all TPM operations since it has a limited number of handles and recovering | 
 | // if it runs out is difficult to implement correctly. Might also be marginally more secure. | 
 | var lock sync.Mutex | 
 |  | 
 | // TPM represents a high-level interface to a connected TPM 2.0 | 
 | type TPM struct { | 
 | 	logger logtree.LeveledLogger | 
 | 	device io.ReadWriteCloser | 
 |  | 
 | 	// We keep the AK loaded since it's used fairly often and deriving it is expensive | 
 | 	akHandleCache tpmutil.Handle | 
 | 	akPublicKey   crypto.PublicKey | 
 | } | 
 |  | 
 | // Initialize finds and opens the TPM (if any). If there is no TPM available it returns | 
 | // ErrNotExists | 
 | func Initialize(logger logtree.LeveledLogger) error { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	tpmDir, err := os.Open("/sys/class/tpm") | 
 | 	if err != nil { | 
 | 		return errors.Wrap(err, "failed to open sysfs TPM class") | 
 | 	} | 
 | 	defer tpmDir.Close() | 
 |  | 
 | 	tpms, err := tpmDir.Readdirnames(2) | 
 | 	if err != nil { | 
 | 		return errors.Wrap(err, "failed to read TPM device class") | 
 | 	} | 
 |  | 
 | 	if len(tpms) == 0 { | 
 | 		return ErrNotExists | 
 | 	} | 
 | 	if len(tpms) > 1 { | 
 | 		// If this is changed GetMeasurementLog() needs to be updated too | 
 | 		logger.Warningf("Found more than one TPM, using the first one") | 
 | 	} | 
 | 	tpmName := tpms[0] | 
 | 	ueventData, err := sysfs.ReadUevents(filepath.Join("/sys/class/tpm", tpmName, "uevent")) | 
 | 	majorDev, err := strconv.Atoi(ueventData["MAJOR"]) | 
 | 	if err != nil { | 
 | 		return fmt.Errorf("failed to convert uevent: %w", err) | 
 | 	} | 
 | 	minorDev, err := strconv.Atoi(ueventData["MINOR"]) | 
 | 	if err != nil { | 
 | 		return fmt.Errorf("failed to convert uevent: %w", err) | 
 | 	} | 
 | 	if err := unix.Mknod("/dev/tpm", 0600|unix.S_IFCHR, int(unix.Mkdev(uint32(majorDev), uint32(minorDev)))); err != nil { | 
 | 		return errors.Wrap(err, "failed to create TPM device node") | 
 | 	} | 
 | 	device, err := tpm2.OpenTPM("/dev/tpm") | 
 | 	if err != nil { | 
 | 		return errors.Wrap(err, "failed to open TPM") | 
 | 	} | 
 | 	tpm = &TPM{ | 
 | 		device: device, | 
 | 		logger: logger, | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | // GenerateSafeKey uses two sources of randomness (Kernel & TPM) to generate the key | 
 | func GenerateSafeKey(size uint16) ([]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	encryptionKeyHost := make([]byte, size) | 
 | 	if _, err := io.ReadFull(rand.Reader, encryptionKeyHost); err != nil { | 
 | 		return []byte{}, errors.Wrap(err, "failed to generate host portion of new key") | 
 | 	} | 
 | 	var encryptionKeyTPM []byte | 
 | 	for i := 48; i > 0; i-- { | 
 | 		tpmKeyPart, err := tpm2.GetRandom(tpm.device, size-uint16(len(encryptionKeyTPM))) | 
 | 		if err != nil { | 
 | 			return []byte{}, errors.Wrap(err, "failed to generate TPM portion of new key") | 
 | 		} | 
 | 		encryptionKeyTPM = append(encryptionKeyTPM, tpmKeyPart...) | 
 | 		if len(encryptionKeyTPM) >= int(size) { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if len(encryptionKeyTPM) != int(size) { | 
 | 		return []byte{}, fmt.Errorf("got incorrect amount of TPM randomess: %v, requested %v", len(encryptionKeyTPM), size) | 
 | 	} | 
 |  | 
 | 	encryptionKey := make([]byte, size) | 
 | 	for i := uint16(0); i < size; i++ { | 
 | 		encryptionKey[i] = encryptionKeyHost[i] ^ encryptionKeyTPM[i] | 
 | 	} | 
 | 	return encryptionKey, nil | 
 | } | 
 |  | 
 | // Seal seals sensitive data and only allows access if the current platform configuration in | 
 | // matches the one the data was sealed on. | 
 | func Seal(data []byte, pcrs []int) ([]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) | 
 | 	if err != nil { | 
 | 		return []byte{}, errors.Wrap(err, "failed to load TPM SRK") | 
 | 	} | 
 | 	defer srk.Close() | 
 | 	sealedKey, err := srk.Seal(pcrs, data) | 
 | 	sealedKeyRaw, err := proto.Marshal(sealedKey) | 
 | 	if err != nil { | 
 | 		return []byte{}, errors.Wrapf(err, "failed to marshal sealed data") | 
 | 	} | 
 | 	return sealedKeyRaw, nil | 
 | } | 
 |  | 
 | // Unseal unseals sensitive data if the current platform configuration allows and sealing constraints | 
 | // allow it. | 
 | func Unseal(data []byte) ([]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	srk, err := tpm2tools.StorageRootKeyRSA(tpm.device) | 
 | 	if err != nil { | 
 | 		return []byte{}, errors.Wrap(err, "failed to load TPM SRK") | 
 | 	} | 
 | 	defer srk.Close() | 
 |  | 
 | 	var sealedKey tpmpb.SealedBytes | 
 | 	if err := proto.Unmarshal(data, &sealedKey); err != nil { | 
 | 		return []byte{}, errors.Wrap(err, "failed to decode sealed data") | 
 | 	} | 
 | 	// Logging this for auditing purposes | 
 | 	pcrList := []string{} | 
 | 	for _, pcr := range sealedKey.Pcrs { | 
 | 		pcrList = append(pcrList, string(pcr)) | 
 | 	} | 
 | 	tpm.logger.Infof("Attempting to unseal data protected with PCRs %s", strings.Join(pcrList, ",")) | 
 | 	unsealedData, err := srk.Unseal(&sealedKey) | 
 | 	if err != nil { | 
 | 		return []byte{}, errors.Wrap(err, "failed to unseal data") | 
 | 	} | 
 | 	return unsealedData, nil | 
 | } | 
 |  | 
 | // Standard AK template for RSA2048 non-duplicatable restricted signing for attestation | 
 | var akTemplate = tpm2.Public{ | 
 | 	Type:       tpm2.AlgRSA, | 
 | 	NameAlg:    tpm2.AlgSHA256, | 
 | 	Attributes: tpm2.FlagSignerDefault, | 
 | 	RSAParameters: &tpm2.RSAParams{ | 
 | 		Sign: &tpm2.SigScheme{ | 
 | 			Alg:  tpm2.AlgRSASSA, | 
 | 			Hash: tpm2.AlgSHA256, | 
 | 		}, | 
 | 		KeyBits: 2048, | 
 | 	}, | 
 | } | 
 |  | 
 | func loadAK() error { | 
 | 	var err error | 
 | 	// Rationale: The AK is an EK-equivalent key and used only for attestation. Using a non-primary | 
 | 	// key here would require us to store the wrapped version somewhere, which is inconvenient. | 
 | 	// This being a primary key in the Endorsement hierarchy means that it can always be recreated | 
 | 	// and can never be "destroyed". Under our security model this is of no concern since we identify | 
 | 	// a node by its IK (Identity Key) which we can destroy. | 
 | 	tpm.akHandleCache, tpm.akPublicKey, err = tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, | 
 | 		tpm2.PCRSelection{}, "", "", akTemplate) | 
 | 	return err | 
 | } | 
 |  | 
 | // Process documented in TCG EK Credential Profile 2.2.1 | 
 | func loadEK() (tpmutil.Handle, crypto.PublicKey, error) { | 
 | 	// The EK is a primary key which is supposed to be certified by the manufacturer of the TPM. | 
 | 	// Its public attributes are standardized in TCG EK Credential Profile 2.0 Table 1. These need | 
 | 	// to match exactly or we aren't getting the key the manufacturere signed. tpm2tools contains | 
 | 	// such a template already, so we're using that instead of redoing it ourselves. | 
 | 	// This ignores the more complicated ways EKs can be specified, the additional stuff you can do | 
 | 	// is just absolutely crazy (see 2.2.1.2 onward) | 
 | 	return tpm2.CreatePrimary(tpm.device, tpm2.HandleEndorsement, | 
 | 		tpm2.PCRSelection{}, "", "", tpm2tools.DefaultEKTemplateRSA()) | 
 | } | 
 |  | 
 | // GetAKPublic gets the TPM2T_PUBLIC of the AK key | 
 | func GetAKPublic() ([]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	if tpm.akHandleCache == tpmutil.Handle(0) { | 
 | 		if err := loadAK(); err != nil { | 
 | 			return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
 | 		} | 
 | 	} | 
 | 	public, _, _, err := tpm2.ReadPublic(tpm.device, tpm.akHandleCache) | 
 | 	if err != nil { | 
 | 		return []byte{}, err | 
 | 	} | 
 | 	return public.Encode() | 
 | } | 
 |  | 
 | // TCG TPM v2.0 Provisioning Guidance v1.0 7.8 Table 2 and | 
 | // TCG EK Credential Profile v2.1 2.2.1.4 de-facto Standard for Windows | 
 | // These are both non-normative and reference Windows 10 documentation that's no longer available :( | 
 | // But in practice this is what people are using, so if it's normative or not doesn't really matter | 
 | const ekCertHandle = 0x01c00002 | 
 |  | 
 | // GetEKPublic gets the public key and (if available) Certificate of the EK | 
 | func GetEKPublic() ([]byte, []byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	ekHandle, publicRaw, err := loadEK() | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, fmt.Errorf("failed to load EK primary key: %w", err) | 
 | 	} | 
 | 	defer tpm2.FlushContext(tpm.device, ekHandle) | 
 | 	// Don't question the use of HandleOwner, that's the Standardâ„¢ | 
 | 	ekCertRaw, err := tpm2.NVReadEx(tpm.device, ekCertHandle, tpm2.HandleOwner, "", 0) | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, err | 
 | 	} | 
 |  | 
 | 	publicKey, err := x509.MarshalPKIXPublicKey(publicRaw) | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, err | 
 | 	} | 
 |  | 
 | 	return publicKey, ekCertRaw, nil | 
 | } | 
 |  | 
 | // MakeAKChallenge generates a challenge for TPM residency and attributes of the AK | 
 | func MakeAKChallenge(ekPubKey, akPub []byte, nonce []byte) ([]byte, []byte, error) { | 
 | 	ekPubKeyData, err := x509.ParsePKIXPublicKey(ekPubKey) | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, fmt.Errorf("failed to decode EK pubkey: %w", err) | 
 | 	} | 
 | 	akPubData, err := tpm2.DecodePublic(akPub) | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, fmt.Errorf("failed to decode AK public part: %w", err) | 
 | 	} | 
 | 	// Make sure we're attesting the right attributes (in particular Restricted) | 
 | 	if !akPubData.MatchesTemplate(akTemplate) { | 
 | 		return []byte{}, []byte{}, errors.New("the key being challenged is not a valid AK") | 
 | 	} | 
 | 	akName, err := akPubData.Name() | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, fmt.Errorf("failed to derive AK name: %w", err) | 
 | 	} | 
 | 	return generateRSA(akName.Digest, ekPubKeyData.(*rsa.PublicKey), 16, nonce, rand.Reader) | 
 | } | 
 |  | 
 | // SolveAKChallenge solves a challenge for TPM residency of the AK | 
 | func SolveAKChallenge(credBlob, secretChallenge []byte) ([]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	if tpm.akHandleCache == tpmutil.Handle(0) { | 
 | 		if err := loadAK(); err != nil { | 
 | 			return []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ekHandle, _, err := loadEK() | 
 | 	if err != nil { | 
 | 		return []byte{}, fmt.Errorf("failed to load EK: %w", err) | 
 | 	} | 
 | 	defer tpm2.FlushContext(tpm.device, ekHandle) | 
 |  | 
 | 	// This is necessary since the EK requires an endorsement handle policy in its session | 
 | 	// For us this is stupid because we keep all hierarchies open anyways since a) we cannot safely | 
 | 	// store secrets on the OS side pre-global unlock and b) it makes no sense in this security model | 
 | 	// since an uncompromised host OS will not let an untrusted entity attest as itself and a | 
 | 	// compromised OS can either not pass PCR policy checks or the game's already over (you | 
 | 	// successfully runtime-exploited a production Metropolis node) | 
 | 	endorsementSession, _, err := tpm2.StartAuthSession( | 
 | 		tpm.device, | 
 | 		tpm2.HandleNull, | 
 | 		tpm2.HandleNull, | 
 | 		make([]byte, 16), | 
 | 		nil, | 
 | 		tpm2.SessionPolicy, | 
 | 		tpm2.AlgNull, | 
 | 		tpm2.AlgSHA256) | 
 | 	if err != nil { | 
 | 		panic(err) | 
 | 	} | 
 | 	defer tpm2.FlushContext(tpm.device, endorsementSession) | 
 |  | 
 | 	_, err = tpm2.PolicySecret(tpm.device, tpm2.HandleEndorsement, tpm2.AuthCommand{Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, endorsementSession, nil, nil, nil, 0) | 
 | 	if err != nil { | 
 | 		return []byte{}, fmt.Errorf("failed to make a policy secret session: %w", err) | 
 | 	} | 
 |  | 
 | 	for { | 
 | 		solution, err := tpm2.ActivateCredentialUsingAuth(tpm.device, []tpm2.AuthCommand{ | 
 | 			{Session: tpm2.HandlePasswordSession, Attributes: tpm2.AttrContinueSession}, // Use standard no-password authentication | 
 | 			{Session: endorsementSession, Attributes: tpm2.AttrContinueSession},         // Use a full policy session for the EK | 
 | 		}, tpm.akHandleCache, ekHandle, credBlob, secretChallenge) | 
 | 		if warn, ok := err.(tpm2.Warning); ok && warn.Code == tpm2.RCRetry { | 
 | 			time.Sleep(100 * time.Millisecond) | 
 | 			continue | 
 | 		} | 
 | 		return solution, err | 
 | 	} | 
 | } | 
 |  | 
 | // FlushTransientHandles flushes all sessions and non-persistent handles | 
 | func FlushTransientHandles() error { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return ErrNotInitialized | 
 | 	} | 
 | 	flushHandleTypes := []tpm2.HandleType{tpm2.HandleTypeTransient, tpm2.HandleTypeLoadedSession, tpm2.HandleTypeSavedSession} | 
 | 	for _, handleType := range flushHandleTypes { | 
 | 		handles, err := tpm2tools.Handles(tpm.device, handleType) | 
 | 		if err != nil { | 
 | 			return err | 
 | 		} | 
 | 		for _, handle := range handles { | 
 | 			if err := tpm2.FlushContext(tpm.device, handle); err != nil { | 
 | 				return err | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | // AttestPlatform performs a PCR quote using the AK and returns the quote and its signature | 
 | func AttestPlatform(nonce []byte) ([]byte, []byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return []byte{}, []byte{}, ErrNotInitialized | 
 | 	} | 
 | 	if tpm.akHandleCache == tpmutil.Handle(0) { | 
 | 		if err := loadAK(); err != nil { | 
 | 			return []byte{}, []byte{}, fmt.Errorf("failed to load AK primary key: %w", err) | 
 | 		} | 
 | 	} | 
 | 	// We only care about SHA256 since SHA1 is weak. This is supported on at least GCE and | 
 | 	// Intel / AMD fTPM, which is good enough for now. Alg is null because that would just hash the | 
 | 	// nonce, which is dumb. | 
 | 	quote, signature, err := tpm2.Quote(tpm.device, tpm.akHandleCache, "", "", nonce, srtmPCRs, | 
 | 		tpm2.AlgNull) | 
 | 	if err != nil { | 
 | 		return []byte{}, []byte{}, fmt.Errorf("failed to quote PCRs: %w", err) | 
 | 	} | 
 | 	return quote, signature.RSA.Signature, err | 
 | } | 
 |  | 
 | // VerifyAttestPlatform verifies a given attestation. You can rely on all data coming back as being | 
 | // from the TPM on which the AK is bound to. | 
 | func VerifyAttestPlatform(nonce, akPub, quote, signature []byte) (*tpm2.AttestationData, error) { | 
 | 	hash := crypto.SHA256.New() | 
 | 	hash.Write(quote) | 
 |  | 
 | 	akPubData, err := tpm2.DecodePublic(akPub) | 
 | 	if err != nil { | 
 | 		return nil, fmt.Errorf("invalid AK: %w", err) | 
 | 	} | 
 | 	akPublicKey, err := akPubData.Key() | 
 | 	if err != nil { | 
 | 		return nil, fmt.Errorf("invalid AK: %w", err) | 
 | 	} | 
 | 	akRSAKey, ok := akPublicKey.(*rsa.PublicKey) | 
 | 	if !ok { | 
 | 		return nil, errors.New("invalid AK: invalid key type") | 
 | 	} | 
 |  | 
 | 	if err := rsa.VerifyPKCS1v15(akRSAKey, crypto.SHA256, hash.Sum(nil), signature); err != nil { | 
 | 		return nil, err | 
 | 	} | 
 |  | 
 | 	quoteData, err := tpm2.DecodeAttestationData(quote) | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 | 	// quoteData.Magic works together with the TPM's Restricted key attribute. If this attribute is set | 
 | 	// (which it needs to be for the AK to be considered valid) the TPM will not sign external data | 
 | 	// having this prefix with such a key. Only data that originates inside the TPM like quotes and | 
 | 	// key certifications can have this prefix and sill be signed by a restricted key. This check | 
 | 	// is thus vital, otherwise somebody can just feed the TPM an arbitrary attestation to sign with | 
 | 	// its AK and this function will happily accept the forged attestation. | 
 | 	if quoteData.Magic != tpmGeneratedValue { | 
 | 		return nil, errors.New("invalid TPM quote: data marker for internal data not set - forged attestation") | 
 | 	} | 
 | 	if quoteData.Type != tpm2.TagAttestQuote { | 
 | 		return nil, errors.New("invalid TPM qoute: not a TPM quote") | 
 | 	} | 
 | 	if !bytes.Equal(quoteData.ExtraData, nonce) { | 
 | 		return nil, errors.New("invalid TPM quote: wrong nonce") | 
 | 	} | 
 |  | 
 | 	return quoteData, nil | 
 | } | 
 |  | 
 | // GetPCRs returns all SRTM PCRs in-order | 
 | func GetPCRs() ([][]byte, error) { | 
 | 	lock.Lock() | 
 | 	defer lock.Unlock() | 
 | 	if tpm == nil { | 
 | 		return [][]byte{}, ErrNotInitialized | 
 | 	} | 
 | 	pcrs := make([][]byte, numSRTMPCRs) | 
 |  | 
 | 	// The TPM can (and most do) return partial results. Let's just retry as many times as we have | 
 | 	// PCRs since each read should return at least one PCR. | 
 | readLoop: | 
 | 	for i := 0; i < numSRTMPCRs; i++ { | 
 | 		sel := tpm2.PCRSelection{Hash: tpm2.AlgSHA256} | 
 | 		for pcrN := 0; pcrN < numSRTMPCRs; pcrN++ { | 
 | 			if len(pcrs[pcrN]) == 0 { | 
 | 				sel.PCRs = append(sel.PCRs, pcrN) | 
 | 			} | 
 | 		} | 
 |  | 
 | 		readPCRs, err := tpm2.ReadPCRs(tpm.device, sel) | 
 | 		if err != nil { | 
 | 			return nil, fmt.Errorf("failed to read PCRs: %w", err) | 
 | 		} | 
 |  | 
 | 		for pcrN, pcr := range readPCRs { | 
 | 			pcrs[pcrN] = pcr | 
 | 		} | 
 | 		for _, pcr := range pcrs { | 
 | 			// If at least one PCR is still not read, continue | 
 | 			if len(pcr) == 0 { | 
 | 				continue readLoop | 
 | 			} | 
 | 		} | 
 | 		break | 
 | 	} | 
 |  | 
 | 	return pcrs, nil | 
 | } | 
 |  | 
 | // GetMeasurmentLog returns the binary log of all data hashed into PCRs. The result can be parsed by eventlog. | 
 | // As this library currently doesn't support extending PCRs it just returns the log as supplied by the EFI interface. | 
 | func GetMeasurementLog() ([]byte, error) { | 
 | 	return ioutil.ReadFile("/sys/kernel/security/tpm0/binary_bios_measurements") | 
 | } |