blob: bb68907fe18c40d417f1f133c71a87e27ed6d5c0 [file] [log] [blame]
// Copyright 2020 The Monogon Project Authors.
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// package pki builds upon metropolis/pkg/pki/ to provide an
// etcd-backed implementation of all x509 PKI Certificates/CAs required to run
// Kubernetes.
// Most elements of the PKI are 'static' long-standing certificates/credentials
// stored within etcd. However, this package also provides a method to generate
// 'volatile' (in-memory) certificates/credentials for per-node Kubelets and
// any client certificates.
package pki
import (
"context"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"fmt"
"net"
"go.etcd.io/etcd/clientv3"
"k8s.io/client-go/tools/clientcmd"
configapi "k8s.io/client-go/tools/clientcmd/api"
common "source.monogon.dev/metropolis/node"
"source.monogon.dev/metropolis/pkg/logtree"
opki "source.monogon.dev/metropolis/pkg/pki"
)
// KubeCertificateName is an enum-like unique name of a static Kubernetes
// certificate. The value of the name is used as the unique part of an etcd
// path where the certificate and key are stored.
type KubeCertificateName string
const (
// The main Kubernetes CA, used to authenticate API consumers, and servers.
IdCA KubeCertificateName = "id-ca"
// Kubernetes apiserver server certificate.
APIServer KubeCertificateName = "apiserver"
// APIServer client certificate used to authenticate to kubelets.
APIServerKubeletClient KubeCertificateName = "apiserver-kubelet-client"
// Kubernetes Controller manager client certificate, used to authenticate
// to the apiserver.
ControllerManagerClient KubeCertificateName = "controller-manager-client"
// Kubernetes Controller manager server certificate, used to run its HTTP
// server.
ControllerManager KubeCertificateName = "controller-manager"
// Kubernetes Scheduler client certificate, used to authenticate to the apiserver.
SchedulerClient KubeCertificateName = "scheduler-client"
// Kubernetes scheduler server certificate, used to run its HTTP server.
Scheduler KubeCertificateName = "scheduler"
// Root-on-kube (system:masters) client certificate. Used to control the
// apiserver (and resources) by Metropolis internally.
Master KubeCertificateName = "master"
// OpenAPI Kubernetes Aggregation CA.
// https://kubernetes.io/docs/tasks/extend-kubernetes/configure-aggregation-layer/#ca-reusage-and-conflicts
AggregationCA KubeCertificateName = "aggregation-ca"
FrontProxyClient KubeCertificateName = "front-proxy-client"
)
const (
// etcdPrefix is where all the PKI data is stored in etcd.
etcdPrefix = "/kube-pki/"
// serviceAccountKeyName is the etcd path part that is used to store the
// ServiceAccount authentication secret. This is not a certificate, just an
// RSA key.
serviceAccountKeyName = "service-account-privkey"
)
// PKI manages all PKI resources required to run Kubernetes on Metropolis. It
// contains all static certificates, which can be retrieved, or be used to
// generate Kubeconfigs from.
type PKI struct {
namespace opki.Namespace
logger logtree.LeveledLogger
KV clientv3.KV
Certificates map[KubeCertificateName]*opki.Certificate
}
func New(l logtree.LeveledLogger, kv clientv3.KV) *PKI {
pki := PKI{
namespace: opki.Namespaced(etcdPrefix),
logger: l,
KV: kv,
Certificates: make(map[KubeCertificateName]*opki.Certificate),
}
make := func(i, name KubeCertificateName, template x509.Certificate) {
pki.Certificates[name] = pki.namespace.New(pki.Certificates[i], string(name), template)
}
pki.Certificates[IdCA] = pki.namespace.New(opki.SelfSigned, string(IdCA), opki.CA("Metropolis Kubernetes ID CA"))
make(IdCA, APIServer, opki.Server(
[]string{
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local",
"localhost",
},
// TODO(q3k): add service network internal apiserver address
[]net.IP{{10, 0, 255, 1}, {127, 0, 0, 1}},
))
make(IdCA, APIServerKubeletClient, opki.Client("metropolis:apiserver-kubelet-client", nil))
make(IdCA, ControllerManagerClient, opki.Client("system:kube-controller-manager", nil))
make(IdCA, ControllerManager, opki.Server([]string{"kube-controller-manager.local"}, nil))
make(IdCA, SchedulerClient, opki.Client("system:kube-scheduler", nil))
make(IdCA, Scheduler, opki.Server([]string{"kube-scheduler.local"}, nil))
make(IdCA, Master, opki.Client("metropolis:master", []string{"system:masters"}))
pki.Certificates[AggregationCA] = pki.namespace.New(opki.SelfSigned, string(AggregationCA), opki.CA("Metropolis OpenAPI Aggregation CA"))
make(AggregationCA, FrontProxyClient, opki.Client("front-proxy-client", nil))
return &pki
}
// EnsureAll ensures that all static certificates (and the serviceaccount key)
// are present on etcd.
func (k *PKI) EnsureAll(ctx context.Context) error {
for n, v := range k.Certificates {
_, _, err := v.Ensure(ctx, k.KV)
if err != nil {
return fmt.Errorf("could not ensure certificate %q exists: %w", n, err)
}
}
_, err := k.ServiceAccountKey(ctx)
if err != nil {
return fmt.Errorf("could not ensure service account key exists: %w", err)
}
return nil
}
// Kubeconfig generates a kubeconfig blob for a given certificate name. The
// same lifetime semantics as in .Certificate apply.
func (k *PKI) Kubeconfig(ctx context.Context, name KubeCertificateName) ([]byte, error) {
c, ok := k.Certificates[name]
if !ok {
return nil, fmt.Errorf("no certificate %q", name)
}
return Kubeconfig(ctx, k.KV, c)
}
// Certificate retrieves an x509 DER-encoded (but not PEM-wrapped) key and
// certificate for a given certificate name.
// If the requested certificate is volatile, it will be created on demand.
// Otherwise it will be created on etcd (if not present), and retrieved from
// there.
func (k *PKI) Certificate(ctx context.Context, name KubeCertificateName) (cert, key []byte, err error) {
c, ok := k.Certificates[name]
if !ok {
return nil, nil, fmt.Errorf("no certificate %q", name)
}
return c.Ensure(ctx, k.KV)
}
// Kubeconfig generates a kubeconfig blob for this certificate. The same
// lifetime semantics as in .Ensure apply.
func Kubeconfig(ctx context.Context, kv clientv3.KV, c *opki.Certificate) ([]byte, error) {
cert, key, err := c.Ensure(ctx, kv)
if err != nil {
return nil, fmt.Errorf("could not ensure certificate exists: %w", err)
}
kubeconfig := configapi.NewConfig()
cluster := configapi.NewCluster()
cluster.Server = fmt.Sprintf("https://127.0.0.1:%v", common.KubernetesAPIPort)
ca, err := c.Issuer.CACertificate(ctx, kv)
if err != nil {
return nil, fmt.Errorf("could not get CA certificate: %w", err)
}
if ca != nil {
cluster.CertificateAuthorityData = pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: ca})
}
kubeconfig.Clusters["default"] = cluster
authInfo := configapi.NewAuthInfo()
authInfo.ClientCertificateData = pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: cert})
authInfo.ClientKeyData = pem.EncodeToMemory(&pem.Block{Type: "PRIVATE KEY", Bytes: key})
kubeconfig.AuthInfos["default"] = authInfo
ct := configapi.NewContext()
ct.Cluster = "default"
ct.AuthInfo = "default"
kubeconfig.Contexts["default"] = ct
kubeconfig.CurrentContext = "default"
return clientcmd.Write(*kubeconfig)
}
// ServiceAccountKey retrieves (and possibly generates and stores on etcd) the
// Kubernetes service account key. The returned data is ready to be used by
// Kubernetes components (in PKIX form).
func (k *PKI) ServiceAccountKey(ctx context.Context) ([]byte, error) {
// TODO(q3k): this should be abstracted away once we abstract away etcd
// access into a library with try-or-create semantics.
path := fmt.Sprintf("%s%s.der", etcdPrefix, serviceAccountKeyName)
// Try loading key from etcd.
keyRes, err := k.KV.Get(ctx, path)
if err != nil {
return nil, fmt.Errorf("failed to get key from etcd: %w", err)
}
if len(keyRes.Kvs) == 1 {
// Certificate and key exists in etcd, return that.
return keyRes.Kvs[0].Value, nil
}
// No key found - generate one.
keyRaw, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
key, err := x509.MarshalPKCS8PrivateKey(keyRaw)
if err != nil {
panic(err) // Always a programmer error
}
// Save to etcd.
_, err = k.KV.Put(ctx, path, string(key))
if err != nil {
err = fmt.Errorf("failed to write newly generated key: %w", err)
}
return key, nil
}
// VolatileKubelet returns a pair of server/client ceritficates for the Kubelet
// to use. The certificates are volatile, meaning they are not stored in etcd,
// and instead are regenerated any time this function is called.
func (k *PKI) VolatileKubelet(ctx context.Context, name string) (server *opki.Certificate, client *opki.Certificate, err error) {
name = fmt.Sprintf("system:node:%s", name)
err = k.EnsureAll(ctx)
if err != nil {
err = fmt.Errorf("could not ensure certificates exist: %w", err)
}
kubeCA := k.Certificates[IdCA]
server = k.namespace.New(kubeCA, "", opki.Server([]string{name}, nil))
client = k.namespace.New(kubeCA, "", opki.Client(name, []string{"system:nodes"}))
return
}
// VolatileClient returns a client certificate for Kubernetes clients to use.
// The generated certificate will place the user in the given groups, and with
// a given identiy as the certificate's CN.
func (k *PKI) VolatileClient(ctx context.Context, identity string, groups []string) (*opki.Certificate, error) {
if err := k.EnsureAll(ctx); err != nil {
return nil, fmt.Errorf("could not ensure certificates exist: %w", err)
}
kubeCA := k.Certificates[IdCA]
return k.namespace.New(kubeCA, "", opki.Client(identity, groups)), nil
}